Skip to main content

An Overview of Small Specimen Creep Testing

  • Chapter
  • First Online:
Advanced Materials Modelling for Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 19))

Abstract

In this paper, some commonly used small specimen creep testing methods, including sub-sized uniaxial creep testing, impression creep testing, small punch creep testing, small ring creep testing and small two bar creep testing, are briefly reviewed. Firstly, the reference stress method and the concept of equivalent gauge length (EGL) are described; these form the basis for processing and interpreting the data from small specimen creep tests. Then, the performance and capability of each of these small specimen creep test techniques are discussed and their relative advantages and limitations, for specific practical applications, are assessed. In particular, the suitability of each of the methods for determining “bulk” material properties is described and it is shown that an appropriate test type can be chosen for each particular case. Typical examples of the application of the small specimen creep test methods, in determining creep deformation and rupture life data, are given. Finally, the future possibilities for the exploitation of small specimen creep test techniques are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyde, T.H., Sun, W., Williams, J.A.: The requirements for and the use of miniature test specimens to provide mechanical and creep properties of materials: - a review. Int. Mater. Rev. 52(4), 213–255 (2007)

    Article  CAS  Google Scholar 

  2. Parker, J.D., James, J.D.: Creep behaviour of miniature disc specimens of low alloy steel, ASME, PVP 279, Developments in a Progressing Technology, pp. 167–172 (1994)

    Google Scholar 

  3. Sturm, R., Jenjo, M., Ule, B., Solar, M.: Small-punch testing of smart weld materials. In: Proceedings of the 2nd International Conference on Structural Integrity of High Temperature Welds, pp. 269–278. IOM\(^{3}\) Communications, London (2003)

    Google Scholar 

  4. Hyde, T.H., Sun, W., Becker, A.A.: Analysis of the impression creep test method using a rectangular indenter for determining the creep properties in welds. Int. J. Mech. Sci. 38, 1089–1102 (1996)

    Article  Google Scholar 

  5. Sun, W., Hyde, T.H., Brett, S.J.: Application of impression creep data in life assessment of power plan materials at high temperatures. J. Mater. Des. Appl. 222, 175–182 (2008)

    CAS  Google Scholar 

  6. Hyde, T.H., Sun, W.: A novel, high sensitivity, small specimen creep test. J. Strain Anal. 44(3), 171–185 (2009)

    Article  Google Scholar 

  7. Hyde, T.H., Hyde, C.J., Sun, W.: A basis for selecting the most appropriate small specimen creep test type. ASME 2012 Pressure Vessel & Piping Conference. pp. 15–19. Toronto, Canada (2012)

    Google Scholar 

  8. Hyde T.H., Sun, W., Balhassn, A.: A small creep test specimen for use in determining uniaxial creep rupture data. In: 2nd International Conference on Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Testing Techniques, pp. 2–4. Ostrava, Czech Republic, Europe (2012)

    Google Scholar 

  9. Parker, J.D., Purmensky, J.: Assessment of performance by monitoring in service changes in material properties. In: 9th European Conference on Fracture, Reliability and Structural Integrity of Advanced Materials, Varna, Bulgaria (1992)

    Google Scholar 

  10. Brett, S.J.: UK Experience with modified 9Cr (Grade 91) steel. In: Baltica VII: International Conference on Life Management & Maintenance for Power Plants, pp. 48–60. Helsinki-Stockholm-Helsinki (2007)

    Google Scholar 

  11. Garzillo, A., Guardamagna, C., Moscotti, L., Ranzani, A.: Technique for residual life assessment of high temperature components based on creep rupture testing on welded miniature specimens. Int. J. Press. Vess. Piping 66, 223–232 (1996)

    Article  CAS  Google Scholar 

  12. Dorner, D., Röller, K., Skrotzki, B., Stöckhert, B., Eggler, G.: Creep of a TiAl alloy: comparison of indentation and tensile testing. Mats. Sci. Eng. A 237(1–2), 346–354 (2003)

    Article  Google Scholar 

  13. Hyde, T.H., Sun, W., Brett, S.J.: Application of impression creep test data for the assessment of service-exposed power plant components. Metall. J. LXIII, 138–145 (2010)

    Google Scholar 

  14. Hyde, T.H., Sun, W., Becker, A.A., Williams, J.A.: Creep behaviour and failure assessment of new and fully repaired P91 pipe welds at 923 K. Proc. Instn. Mech. Eng. Part L J. Mater. Des. Appl. 218, 211–222 (2004)

    Google Scholar 

  15. Li, Y.Z., Sturm, R.: Determination of Norton creep law and rupture time dependence from small punch test. In: Proceedings of 3rd International Conference on Integrity of High Temperature Welds, pp. 433–449. IoM Communications, London (2007)

    Google Scholar 

  16. Anderson, R.G., Gardener, L.R.T., Hodgkins, W.R.: Deformation of uniformly loaded beams obeying complex creep laws. J. Mech. Eng. Sci. 5, 238–244 (1963)

    Article  Google Scholar 

  17. Johnsson, A.: An alternative definition of reference stress for creep. IMechE. Conf. Pub. 13, 205.1–205.7 (1973)

    Google Scholar 

  18. Hyde, T.H., Yehia, K., Sun, W.: Observation on the creep of two-material structures. J. Strain Anal. 31(6), 441–461 (1996)

    Article  Google Scholar 

  19. MacKenzie, A.C.: On the use of a single uniaxial test to estimate deformation rates in some structures undergoing creep. Int. J. Mech. Sci. 10, 441–453 (1968)

    Article  Google Scholar 

  20. Askins, M.C., Marchant, K.D.: Estimating the remanent life of boiler pressure parts, EPRI Contract RP2253-1, Part 2, Miniature specimen creep testing in tension, CEGB Report., TPRD/3099/R86, CEGB, UK (1987)

    Google Scholar 

  21. Hyde, T.H., Sun, W., Brett, S.J.: Some recommendations on standardization of impression creep testing. In: Proceedings of ECCC Conference on Creep and Fracture in High Temperature Components—Design and Life Assessment, pp. 1079–1087. Dübendorf, Switzerland (2009)

    Google Scholar 

  22. CEN CWA 15627 Workshop Agreement: Small punch test method for metallic materials (Part A). December 2006, European Committee for Standardisation

    Google Scholar 

  23. Hyde, T.H., Sun, W.: Multi-step load impression creep tests for a 1/2CrMoV steel at 565 \(^{\circ }\)C. Strain 37, 99–103 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Brian Webster and Shane Maskill at the University of Nottingham for their assistance with the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Hyde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hyde, T.H., Sun, W., Hyde, C.J. (2013). An Overview of Small Specimen Creep Testing. In: Altenbach, H., Kruch, S. (eds) Advanced Materials Modelling for Structures. Advanced Structured Materials, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35167-9_19

Download citation

Publish with us

Policies and ethics