Advertisement

An Efficient Visibility Graph Similarity Algorithm and Its Application on Sleep Stages Classification

  • Guohun Zhu
  • Yan Li
  • Peng Paul Wen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7670)

Abstract

This paper presents an efficient horizontal visibility directed graph similarity algorithm (HVDS) by taking the advantages of two synchronization measuring methods in graph theory: phase locking value (PLV) and visibility graph similarity (VGS). It develops a new linear horizontal visibility graph constructing algorithm, analyzes its constructing complexity, and tests its feature performance via the sleep stages identification application. Six features are extracted, separately, from HVDS, PLV and VGS as the input to a support vector machine to classify the seven sleep stages. 11,120 data segments are used for the experiments with each segment lasts 30 seconds. The training sets are selected from a single subject and the testing sets are selected from multiple subjects. 10-cross-validation is employed to evaluate the performances of the PLV, VGS and HVDS methods. The experimental results show that the PLV, VGS and HVDS algorithms produce an average classification accuracy of 72.3%, 81.5% and 82.6%, respectively. The speed of the HVDS is 39 times faster than the VGS algorithm.

Keywords

Computational complexity phase locking value horizontal visibility directed graph similarity classification sleep stage synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostol, G., Creutzfeldt, O.D.: Crosscorrelation between the activity of septal units and hippocampal EEG during arousal. Brain Research 67, 65–75 (1974)CrossRefGoogle Scholar
  2. 2.
    Colter, N., Shaw, J.C.: Eeg coherence analysis and field dependence. Biological Psychology 15, 215–228 (1982)CrossRefGoogle Scholar
  3. 3.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase Synchronization of Chaotic Oscillators. Physical Review Letters 76, 1804–1807 (1996)CrossRefGoogle Scholar
  4. 4.
    Stam, C.J., van Dijk, B.W.: Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Phys. D 163, 236–251 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ahmadlou, M., Adeli, H.: Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems. Physica D: Nonlinear Phenomena 241, 326–332 (2012)CrossRefGoogle Scholar
  6. 6.
    He, A., Yang, X., Yang, X., Ning, X.: Phase Synchronization in Sleep Electroencephalogram. In: 2007 IEEE/ICME International Conference on Complex Medical Engineering (CME 2007), pp. 1421–1424 (2007)Google Scholar
  7. 7.
    Acharya, A., Kar, S., Routray, A.: Phase synchronization based weighted networks for classifying levels of fatigue and sleepiness. In: 2010 International Conference on Systems in Medicine and Biology (ICSMB), pp. 265–268 (2010)Google Scholar
  8. 8.
    Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J.: Regional scalp EEG slow-wave synchronization during sleep cyclic alternating pattern A1 subtypes. Neuroscience Letters 404, 352–357 (2006)CrossRefGoogle Scholar
  9. 9.
    Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J.: Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clinical Neurophysiology 118, 449–456 (2007)CrossRefGoogle Scholar
  10. 10.
    Akṣahin, M., Aydın, S., Fırat, H., Eroǧul, O.: Artificial Apnea Classification with Quantitative Sleep EEG Synchronization. Journal of Medical Systems 36, 139–144 (2012)CrossRefGoogle Scholar
  11. 11.
    Shao, Z.-G.: Network analysis of human heartbeat dynamics. Applied Physics Letters 96, 073703 (2010)Google Scholar
  12. 12.
    Dong, Z., Li, X.: Comment on Network analysis of human heartbeat dynamics. Applied Physics Letters 96, 266101–266102 (2010)CrossRefGoogle Scholar
  13. 13.
    Ahmadlou, M., Adeli, H., Adeli, A.: New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. Journal of Neural Transmission 117, 1099–1109 (2010)CrossRefGoogle Scholar
  14. 14.
    Yang, Y., Wang, J., Yang, H., Mang, J.: Visibility graph approach to exchange rate series. Physica A: Statistical Mechanics and its Applications 388, 4431–4437 (2009)CrossRefGoogle Scholar
  15. 15.
    Elsner, J.B., Jagger, T.H., Fogarty, E.A.: Visibility network of United States hurricanes. Geophys. Res. Lett. 36, L16702 (2009)Google Scholar
  16. 16.
  17. 17.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 21–27 (2011)Google Scholar
  18. 18.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101, e215–e220 (2000)CrossRefGoogle Scholar
  19. 19.
    Ronzhina, M., Janoušek, O., Kolářová, J., Nováková, M., Honzík, P., Provazník, I.: Sleep scoring using artificial neural networks. Sleep Medicine Reviews 16, 251–263 (2012)CrossRefGoogle Scholar
  20. 20.
    Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects. In: Office, U.G.P. (ed.) Public Health Service, Washington DC (1968)Google Scholar
  21. 21.
    Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.C.: From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences 105, 4972–4975 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: Exact results for random time series. Physical Review E 80, 046103 (2009)CrossRefGoogle Scholar
  23. 23.
    Gutin, G., Mansour, T., Severini, S.: A characterization of horizontal visibility graphs and combinatorics on words. Physica A: Statistical Mechanics and its Applications 390, 2421–2428 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chapotot, F., Becq, G.: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. International Journal of Adaptive Control and Signal Processing 24, 409–423 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guohun Zhu
    • 1
    • 3
  • Yan Li
    • 1
    • 3
  • Peng Paul Wen
    • 2
    • 3
  1. 1.Department of Mathematics and ComputingUniversity of Southern QueenslandAustralia
  2. 2.Faculty of Engineering and SurveyingUniversity of Southern QueenslandAustralia
  3. 3.Centre for Systems BiologyUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations