A Naïve Hypergraph Model of Brain Networks

  • Zhijiang Wang
  • Jiming Liu
  • Ning Zhong
  • Yulin Qin
  • Haiyan Zhou
  • Jian Yang
  • Kuncheng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7670)


This paper extended the concept of motif by maximum cliques defined as “hyperedges” in brain networks, as novel and flexible characteristic network building blocks. Based on the definition of hyperedge, a naïve brain hypergraph model was constructed from a graph model of large-scale brain functional networks during rest. Nine intrinsic hub hyperedges of functional connectivity were identified, which could be considered as the most important intrinsic information processing blocks (or units), and they also covered many components of the core brain intrinsic networks. Furthermore, these overlapped hub hyperedges were assembled into a compound structure as a core subsystem of the intrinsic brain organization.


Functional Connectivity Default Mode Network Brain Network Maximum Clique Eigenvector Centrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8, 418–425 (2004)CrossRefGoogle Scholar
  2. 2.
    Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)CrossRefGoogle Scholar
  3. 3.
    Bressler, S.L., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences 14, 277–290 (2010)CrossRefGoogle Scholar
  4. 4.
    Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15, 483–506 (2011)CrossRefGoogle Scholar
  5. 5.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  6. 6.
    Latora, V., Marchiori, M.: Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  7. 7.
    Latora, V., Marchiori, M.: Economic small-world behaviour in weighted networks. Euro. Phys. JB. 32, 249–263 (2003)Google Scholar
  8. 8.
    Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)Google Scholar
  9. 9.
    Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.D.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005a)CrossRefGoogle Scholar
  10. 10.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)CrossRefGoogle Scholar
  11. 11.
    Van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008)CrossRefGoogle Scholar
  12. 12.
    Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping the structural core of human cerebral cortex. PLoS ONE 2, e597 (2007)Google Scholar
  13. 13.
    He, Y., Chen, Z.J., Evans, A.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007)CrossRefGoogle Scholar
  14. 14.
    Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., Melie-Garcia, L.: Studying the human brain ananatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064–1076 (2008)CrossRefGoogle Scholar
  15. 15.
    Sporns, O., Honey, C.J., Kötter, R.: Identification and classification of hubs in brain networks. PLoS Biology 2, e1049 (2004)Google Scholar
  16. 16.
    He, Y., Wang, J., Wang, L., Chen, Z.J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y., Evans, A.C.: Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4, e5226 (2009)Google Scholar
  17. 17.
    Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biology 2, e369 (2004)Google Scholar
  18. 18.
    Costa, L.F., Rodrigues, F.A.: Superedges: connecting structure and dynamics in complex networks. arXiv:0801.4068v2 (2008)Google Scholar
  19. 19.
    De Vico Fallani, F., Rodrigues, F.A., Costa, L.F., Astolfi, L., Cincotti, F., Mattia, D., Salinari, S., Babiloni, F.: Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topogr. 23, 344–354 (2011)CrossRefGoogle Scholar
  20. 20.
    Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cere. Cortex (2011), doi: 10.1093/cercor/bhr099Google Scholar
  21. 21.
    Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678 (2005)CrossRefGoogle Scholar
  22. 22.
    Jenkins, G.M., Watts, D.G.: Spectral Analysis and Its Applications. Holden-Day, San Francisco (1968)Google Scholar
  23. 23.
    Bonacich, P.: Techinique for analyzing overlapping memberships. Sociological Methodology 4, 176–185 (1972)CrossRefGoogle Scholar
  24. 24.
    Bonacich, P., Holdren, A.C., Johnston, M.: Hyper-edges and multidimensional centrality. Social Networks 26, 189–203 (2004)CrossRefGoogle Scholar
  25. 25.
    Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 64, 248–263 (1907)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Frobenius, G.: Üeber Matrizen aus nicht negativen Elementen. Sitzungsber. Königl. Preuss. Akad. Wiss (Berlin), 456–477 (1912)Google Scholar
  27. 27.
    Shulman, G.L., Fiez, J.A., Corbetta, M., Buckner, R.L., Miezin, F.M., Raichle, M.E., Petersen, S.E.: Common blood flow changes across visual tasks: II. decreases in cerebral cortex. J. Cognit. Neurosci. 9, 648–663 (1997)CrossRefGoogle Scholar
  28. 28.
    Raichle, M.E., Macleod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682 (2001)CrossRefGoogle Scholar
  29. 29.
    Cole, M.W., Pathak, S., Schneider, W.: Identifying the brain’s most globally connected regions. NeuroImage 49, 3132–3148 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhijiang Wang
    • 1
    • 2
  • Jiming Liu
    • 1
    • 2
    • 3
  • Ning Zhong
    • 1
    • 2
    • 4
  • Yulin Qin
    • 1
    • 2
    • 5
  • Haiyan Zhou
    • 1
    • 2
  • Jian Yang
    • 1
    • 2
  • Kuncheng Li
    • 6
    • 2
  1. 1.International WIC InstituteBeijing University of TechnologyChina
  2. 2.Beijing Key Laboratory of MRI and Brain InformaticsChina
  3. 3.Dept. of Computer ScienceHong Kong Baptist UniversityChina
  4. 4.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyJapan
  5. 5.Dept. of PsychologyCarnegie Mellon UniversityUSA
  6. 6.Dept. of Radiology, Xuanwu HospitalCapital Medical UniversityChina

Personalised recommendations