Associative Information Processing in Parahippocampal Place Area (PPA): An fMRI Study

  • Mi Li
  • Dongning Han
  • Shengfu Lu
  • Zheng Liu
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7670)


The function of the parahippocampal place area (PPA) is a matter of debate. We investigated this issue in fMRI experiment by 36 normal subjects using two types of tasks: figure and text. Furthermore, the figure tasks contain two kinds of contextual associations: one is among items; the other is among items and their locations which refers to the spatial contextual associations. In contrast, the text tasks contain only item contextual associations - they do not have any spatial information. The results showed that the right PPA located at anterior lingual gyrus and left anterior parahippocampal gyrus nearby amygdala were significantly activated during both figure and text tasks, which indicate that the PPA is more involved in associative information processing.


Source Memory fMRI Experiment Parahippocampal Cortex Associative Information Contextual Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabrieli, J., Brewer, J.B., Desmond, J.E., Glover, G.H.: Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276, 264–266 (1997)CrossRefGoogle Scholar
  2. 2.
    Henke, K., Buck, A., Weber, B., Wieser, H.G.: Human hippocampus establishes associations in memory. Hippocampus 7, 249–256 (1997)CrossRefGoogle Scholar
  3. 3.
    Henke, K., Weber, B., Kneifel, S., Wieser, H.G., Buck, A.: Human hippocampus associates information in memory. PNAS 96, 5884–5889 (1999)CrossRefGoogle Scholar
  4. 4.
    Dobbins, I.G., Rice, H.J., Wagner, A.D., Schacter, D.L.: Memory orientation and success: separable neurocognitive components underlying episodic recognition. Neuropsychologia 41, 318–333 (2003)CrossRefGoogle Scholar
  5. 5.
    Sommer, T., Rose, M., Weiller, C., Buchel, C.: Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia 43, 732–743 (2005)CrossRefGoogle Scholar
  6. 6.
    Bird, C.M., Burgess, N.: The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194 (2008)CrossRefGoogle Scholar
  7. 7.
    Aguirre, G.K., Detre, J.A., Alsop, D.C., DEsposito, M.: The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996)CrossRefGoogle Scholar
  8. 8.
    Maguire, E.A., Frackowiak, R., Frith, C.D.: Recalling routes around London: Activation of the right hippocampus in taxi drivers. J. Neurosci. 17, 7103–7110 (1997)Google Scholar
  9. 9.
    Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaem, O., Petit, L., Zago, L., et al.: Neural correlates of topographic mental exploration: The impact of route versus survey perspective learning. Neuroimage 12, 588–600 (2000)CrossRefGoogle Scholar
  10. 10.
    Levy, I., Hasson, U., Avidan, G., Hendler, T., Malach, R.: Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2000)Google Scholar
  11. 11.
    Goh, J.O., Siong, S.C., Park, D., Gutchess, A., Hebrank, A., Chee, M.W.: Cortical areas involved in object, background, and object-background processing revealed with functional magnetic resonance adaptation. J. Neurosci. 24, 10223–10228 (2004)CrossRefGoogle Scholar
  12. 12.
    Yi, D.J., Chun, M.M.: Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. J. Neurosci. 25, 3593–3600 (2005)CrossRefGoogle Scholar
  13. 13.
    Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392, 598–601 (1998)CrossRefGoogle Scholar
  14. 14.
    Epstein, R., Harris, A., Stanley, D., Kanwisher, N.: The parahippocampal place area: Recognition, navigation, or encoding? Neuron 23, 115–125 (1999)CrossRefGoogle Scholar
  15. 15.
    Ghaem, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., et al.: Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8, 739–744 (1997)CrossRefGoogle Scholar
  16. 16.
    Rosenbaum, R.S., Ziegler, M., Winocur, G., Grady, C.L., Moscovitch, M.: I have often walked down this street before: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14, 826–835 (2004)CrossRefGoogle Scholar
  17. 17.
    O’Craven, K.M., Kanwisher, N.: Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cognitive Neurosci. 12, 1013–1023 (2000)CrossRefGoogle Scholar
  18. 18.
    Aguirre, G.K., D’Esposito, M.: Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628 (1999)CrossRefGoogle Scholar
  19. 19.
    Epstein, R., DeYoe, E.A., Press, D.Z., Rosen, A.C., Kanwisher, N.: Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn. Neuropsychol. 18, 481–508 (2001)Google Scholar
  20. 20.
    Mendez, M.F., Cherrier, M.M.: Agnosia for scenes in topographagnosia. Neuropsychologia 41, 1387–1395 (2003)CrossRefGoogle Scholar
  21. 21.
    Bar, M., Aminoff, E.: Cortical analysis of visual context. Neuron 38, 347–358 (2003)CrossRefGoogle Scholar
  22. 22.
    Aminoff, E., Gronau, N., Bar, M.: The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17, 1493–1503 (2007)CrossRefGoogle Scholar
  23. 23.
    Yonelinas, A.P., Hopfinger, J.B., Buonocore, M.H., Kroll, N., Baynes, K.: Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: an fMRI study. Neuroreport 12, 359–363 (2001)CrossRefGoogle Scholar
  24. 24.
    Epstein, R.A., Ward, E.J.: How Reliable Are Visual Context Effects in the Parahippocampal Place Area? Cereb Cortex 20, 294–303 (2010)CrossRefGoogle Scholar
  25. 25.
    Bar, M., Aminoff, E., Schacter, D.L.: Scenes unseen: The parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J. Neurosci. 28, 8539–8544 (2008)CrossRefGoogle Scholar
  26. 26.
    St George, M., Kutas, M., Martinez, A., Sereno, M.I.: Semantic integration in reading: engagement of the right hemisphere during discourse processing. Brain 122, 1317–1325 (1999)CrossRefGoogle Scholar
  27. 27.
    Mou, W.M., McNamara, T.P.: Intrinsic frames of reference in spatial memory. J. Exp. Psychol. Learn. 28, 162–170 (2002)CrossRefGoogle Scholar
  28. 28.
    Wang, R.F., Spelke, E.S.: Human spatial representation: Insights from animals - Ranxiao Frances Wang and Elizabeth S. Spelke. Trends Cogn. Sci. 6, 376–382 (2002)CrossRefGoogle Scholar
  29. 29.
    Murray, E.A., Bussey, T.J.: Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn. Sci. 3, 142–151 (1999)CrossRefGoogle Scholar
  30. 30.
    Sperling, R., Chua, E., Cocchiarella, A., Rand-Giovannetti, E., Poldrack, R., Schacter, D.L., et al.: Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20, 1400–1410 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mi Li
    • 1
    • 2
    • 6
  • Dongning Han
    • 3
  • Shengfu Lu
    • 2
    • 6
  • Zheng Liu
    • 4
  • Ning Zhong
    • 2
    • 5
    • 6
  1. 1.The School of Computer and Communication EngineeringLiaoning ShiHua UniversityLiaoningChina
  2. 2.International WIC InstituteBeijing University of TechnologyBeijingChina
  3. 3.College of Optical and Electronical InformationChangchun University of Science and TechnologyJilinChina
  4. 4.Dept. of Biomedical EngineeringTianjing UniversityTianjingChina
  5. 5.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyMaebashi-CityJapan
  6. 6.Beijing Key Laboratory of MRI and Brain InformaticsChina

Personalised recommendations