Skip to main content

ProtoLeaks: A Reliable and Protocol-Independent Network Covert Channel

  • Conference paper
Information Systems Security (ICISS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7671))

Included in the following conference series:

Abstract

We propose a theoretical framework for a network covert channel based on enumerative combinatorics. It offers protocol independence and avoids detection by using a mimicry defense. Using a network monitoring phase, traffic is analyzed to detect which application-layer protocols are allowed through the firewalls. Using these results, a covert channel is built based on permutations of benign network objects, such as FTP commands and HTTP requests to different web servers. Any protocol that offers reliability guarantees can be plugged into the framework. This includes any protocol that is built on top of the TCP protocol. The framework closely mimics the behavioral statistics of the legitimate traffic, making the covert channel very hard to detect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Computer Security Center, US DoD. Trusted Computer System Evaluation Criteria. Tech. Rep. DOD 5200.28-STD (1985)

    Google Scholar 

  2. Zander, S., Armitage, G., Branch, P.: A Survey of Covert Channels and Countermeasures in Computer Network Protocols. IEEE Communications Surveys and Tutorials 9(3), 44–57 (2007)

    Article  Google Scholar 

  3. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating Steganography in Internet Traffic with Active Wardens. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 18–35. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Eßer, H., Freiling, F.: Kapazitätsmessung eines verdeckten Zeitkanals über HTTP. Tech. Rep. TR-2005-10 (2005)

    Google Scholar 

  5. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proc. 15th Conf. USENIX Security Symposium (2006)

    Google Scholar 

  6. Luo, X., Zhou, P., Chan, E.W.W., Chang, R.K.C., Lee, W.: A Combinatorial Approach to Network Covert Communications with Applications in Web Leaks. In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks, DSN (2011)

    Google Scholar 

  7. El-Atawy, A., Al-Shaer, E.: Building Covert Channels over the Packet Reordering Phenomenon. In: IEEE INFOCOM 2009 (2009)

    Google Scholar 

  8. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time. Information Processing Letters 79, 281–284 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) (1979)

    Google Scholar 

  10. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20 (1987)

    Google Scholar 

  11. Danzig, P.B., Jamin, S.: tcplib: A library of internetwork traffic characteristics. Tech. rep. (1991)

    Google Scholar 

  12. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection (2012)

    Google Scholar 

  13. Gianvecchio, S., Wang, H., Wijesekera, D., Jajodia, S.: Model-based covert timing channels: Automated modeling and evasion (2008)

    Google Scholar 

  14. Cabuk, S., Brodley, C.E., Shields, C.: IP Covert Timing Channels: Design and Detection. In: Proc. 11th ACM Conf. Computer and Communications Security, CCS, pp. 178–187 (2004)

    Google Scholar 

  15. Luo, X., Chan, E.W.W., Chang, R.K.C.: Cloak: A Ten-Fold Way for Reliable Covert Communications. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 283–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Khan, H., Javed, Y., Mirza, F., Khayam, S.A.: Embedding a Covert Channel in Active Network Connections. In: IEEE Global Telecommunications Conference (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swinnen, A., Strackx, R., Philippaerts, P., Piessens, F. (2012). ProtoLeaks: A Reliable and Protocol-Independent Network Covert Channel. In: Venkatakrishnan, V., Goswami, D. (eds) Information Systems Security. ICISS 2012. Lecture Notes in Computer Science, vol 7671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35130-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35130-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35129-7

  • Online ISBN: 978-3-642-35130-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics