Skip to main content

Mesenchymal Stem/Stromal Cells: Opportunities and Obstacles in ARDS

  • Chapter
  • 2675 Accesses

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

The acute respiratory distress syndrome (ARDS) constitutes a major cause of death in critical care worldwide, with mortality rates of 40–60 % even with ongoing advances in care. Despite being the focus of ongoing intensive research efforts for over four decades, there are no pharmacologic therapies for acute lung injury (ALI)/ARDS. The lack of success to date with standard ‘pharmacologic’ approaches suggests the need to consider more complex therapeutic approaches, aimed at reducing early injury while maintaining host immune competence, and facilitating (or at least not inhibiting) lung regeneration and repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Curley GF, Hayes M, Ansari B et al (2012) Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 67:496–501

    Article  PubMed  Google Scholar 

  2. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  PubMed  CAS  Google Scholar 

  3. Kanazawa H, Fujimoto Y, Teratani T et al (2011) Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 6:e19195

    Article  PubMed  CAS  Google Scholar 

  4. Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  5. Mei SH, Haitsma JJ, Dos Santos CC et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057

    Article  PubMed  CAS  Google Scholar 

  6. Krasnodembskaya A, Song Y, Fang X et al (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238

    Article  PubMed  CAS  Google Scholar 

  7. Islam MN, Das SR, Emin MT et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    Article  PubMed  CAS  Google Scholar 

  8. Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  9. Nemeth K, Keane-Myers A, Brown JM et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107:5652–5657

    Article  PubMed  CAS  Google Scholar 

  10. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591

    Article  PubMed  Google Scholar 

  11. Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–11007

    Article  PubMed  CAS  Google Scholar 

  12. Danchuk S, Ylostalo JH, Hossain F et al (2011) Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-alpha-induced protein 6. Stem Cell Res Ther 2:27

    Article  PubMed  CAS  Google Scholar 

  13. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    PubMed  CAS  Google Scholar 

  14. Xu J, Woods CR, Mora AL et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293:L131–L141

    Article  PubMed  CAS  Google Scholar 

  15. Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269

    Article  PubMed  Google Scholar 

  16. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106:16357–16362

    Article  PubMed  CAS  Google Scholar 

  17. Fang X, Neyrinck AP, Matthay MA, Lee JW (2010) Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 285:26211–26222

    Article  PubMed  CAS  Google Scholar 

  18. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G (2011) The role of microvesicles in tissue repair. Organogenesis 7:105–115

    Article  PubMed  Google Scholar 

  19. Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803

    Article  PubMed  Google Scholar 

  20. Augello A, Tasso R, Negrini SM et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–1490

    Article  PubMed  CAS  Google Scholar 

  21. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  PubMed  CAS  Google Scholar 

  22. Raffaghello L, Bianchi G, Bertolotto M et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26:151–162

    Article  PubMed  CAS  Google Scholar 

  23. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  24. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  25. Kotton DN, Fabian AJ, Mulligan RC (2005) Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol 33:328–334

    Article  PubMed  CAS  Google Scholar 

  26. Ortiz LA, Gambelli F, McBride C et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411

    Article  PubMed  CAS  Google Scholar 

  27. Ghofrani HA, Barst RJ, Benza RL et al (2009) Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 54:S108–S117

    Article  PubMed  Google Scholar 

  28. Meisel R, Brockers S, Heseler K et al (2011) Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase. Leukemia 25:648–654

    Article  PubMed  CAS  Google Scholar 

  29. Gregory CA, Ylostalo J, Prockop DJ (2005) Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate. Sci STKE 2005:pe37

    Article  PubMed  Google Scholar 

  30. Lee RH, Hsu SC, Munoz J et al (2006) A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 107:2153–2161

    Article  PubMed  CAS  Google Scholar 

  31. Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4:e6498

    Article  PubMed  Google Scholar 

  32. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  PubMed  CAS  Google Scholar 

  33. Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170

    Article  PubMed  CAS  Google Scholar 

  34. Rubio D, Garcia S, Paz MF et al (2008) Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 3:e1398

    Article  PubMed  Google Scholar 

  35. Das R, Jahr H, van Osch GJ, Farrell E (2010) The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev 16:159–168

    Article  PubMed  CAS  Google Scholar 

  36. Stolzing A, Scutt A (2006) Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med 41:326–338

    Article  PubMed  CAS  Google Scholar 

  37. Francois M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J (2012) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy 14:147–152

    Article  PubMed  CAS  Google Scholar 

  38. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    Article  PubMed  CAS  Google Scholar 

  39. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  PubMed  Google Scholar 

  40. Cho PS, Messina DJ, Hirsh EL et al (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438

    Article  PubMed  CAS  Google Scholar 

  41. Polchert D, Sobinsky J, Douglas G et al (2008) IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 38:1745–1755

    Article  PubMed  CAS  Google Scholar 

  42. Griffin MD, Ritter T, Mahon BP (2010) Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther 21:1641–1655

    Article  PubMed  CAS  Google Scholar 

  43. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  PubMed  CAS  Google Scholar 

  44. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH (2004) Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113:243–252

    PubMed  CAS  Google Scholar 

  45. Epperly MW, Guo H, Gretton JE, Greenberger JS (2003) Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 29:213–224

    Article  PubMed  CAS  Google Scholar 

  46. Aguilar S, Scotton CJ, McNulty K et al (2009) Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One 4:e8013

    Article  PubMed  Google Scholar 

  47. Jeong JO, Han JW, Kim JM et al (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108:1340–1347

    Article  PubMed  CAS  Google Scholar 

  48. Cogle CR, Theise ND, Fu D et al (2007) Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry. Stem Cells 25:1881–1887

    Article  PubMed  Google Scholar 

  49. Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26:1387–1394

    Article  PubMed  CAS  Google Scholar 

  50. Tian LL, Yue W, Zhu F, Li S, Li W (2011) Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226:1860–1867

    Article  PubMed  Google Scholar 

  51. Gupta N, Krasnodembskaya A, Kapetanaki M et al (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539

    Article  PubMed  Google Scholar 

  52. Krasnodembskaya A, Samarani G, Song Y et al (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302:L1003–L1013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Dr. Jeremy A. Scott for his thoughtful critique of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Laffey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Curley, G.F., Hayes, M., Laffey, J.G. (2013). Mesenchymal Stem/Stromal Cells: Opportunities and Obstacles in ARDS. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics