Skip to main content

A Method to Avoid Duplicative Flipping in Local Search for SAT

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

  • 3524 Accesses

Abstract

Stochastic perturbation on variable flipping is the key idea of local search for SAT. Observing that variables are flipped several times in an attempt to escape from a local minimum, this paper presents a duplication learning mechanism in stagnation stages to minimise duplicative variable flipping. The heuristic incorporates the learned knowledge into a variable weighting scheme to effectively prevent the search from selecting duplicative variables. Additionally, probability-based and time window smoothing techniques are adopted to eliminate the effects of redundant information. The integration of the heuristic and gNovelty +  was compared with the original solvers and other state-of-the-art local search solvers. The experimental results showed that the new solver outperformed other solvers on the full set of SAT 2011 competition instances and three sets of real-world verification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)

    MATH  Google Scholar 

  3. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI 2002, pp. 635–660 (2002)

    Google Scholar 

  4. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

    MATH  Google Scholar 

  5. Hutter, F., Tompkins, D.A.D., H. Hoos, H.: Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Li, C.-M., Huang, W.Q.: Diversification and Determinism in Local Search for Satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Li, C.-M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: AAAI/IAAI, pp. 321–326 (1997)

    Google Scholar 

  9. Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for satisfiability. JSAT 4(2-4), 149–172 (2008)

    MATH  Google Scholar 

  10. Prestwich, S.: SAT problems with chains of dependent variables. In: Discrete Applied Mathematics, vol. 3037, pp. 1–22 (2002)

    Google Scholar 

  11. Prestwich, S.D.: Random Walk with Continuously Smoothed Variable Weights. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Selman, B., Kautz, H.A.: Domain-independent extensions to gsat: Solving large structured satisfiability problems. In: IJCAI, pp. 290–295 (1993)

    Google Scholar 

  13. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: AAAI, pp. 440–446 (1992)

    Google Scholar 

  14. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17(4-5), 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  15. Thornton, J.R., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: Proceedings of AAAI 2004, pp. 191–196 (2004)

    Google Scholar 

  16. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Wei, W., Li, C.M.: Switching between two adaptive noise mechanisms in localsearch. In: Booklet of the 2009 SAT Competition (2009)

    Google Scholar 

  18. Wei, W., Li, C.-M., Zhang, H.: Switching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Wu, Z., Wah, B.W.: Trap escaping strategies in discrete lagrangian methods for solving hard satisfiability and maximum satisfiability problems. In: AAAI/IAAI, pp. 673–678 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duong, TT., Pham, D.N., Sattar, A. (2012). A Method to Avoid Duplicative Flipping in Local Search for SAT. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics