Abstract
Stochastic perturbation on variable flipping is the key idea of local search for SAT. Observing that variables are flipped several times in an attempt to escape from a local minimum, this paper presents a duplication learning mechanism in stagnation stages to minimise duplicative variable flipping. The heuristic incorporates the learned knowledge into a variable weighting scheme to effectively prevent the search from selecting duplicative variables. Additionally, probability-based and time window smoothing techniques are adopted to eliminate the effects of redundant information. The integration of the heuristic and gNovelty + was compared with the original solvers and other state-of-the-art local search solvers. The experimental results showed that the new solver outperformed other solvers on the full set of SAT 2011 competition instances and three sets of real-world verification problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10–15. Springer, Heidelberg (2010)
Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of AAAI 2002, pp. 635–660 (2002)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)
Hutter, F., Tompkins, D.A.D., H. Hoos, H.: Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)
Li, C.-M., Huang, W.Q.: Diversification and Determinism in Local Search for Satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)
Li, C.-M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007)
McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: AAAI/IAAI, pp. 321–326 (1997)
Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for satisfiability. JSAT 4(2-4), 149–172 (2008)
Prestwich, S.: SAT problems with chains of dependent variables. In: Discrete Applied Mathematics, vol. 3037, pp. 1–22 (2002)
Prestwich, S.D.: Random Walk with Continuously Smoothed Variable Weights. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer, Heidelberg (2005)
Selman, B., Kautz, H.A.: Domain-independent extensions to gsat: Solving large structured satisfiability problems. In: IJCAI, pp. 290–295 (1993)
Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: AAAI, pp. 440–446 (1992)
Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17(4-5), 443–455 (1991)
Thornton, J.R., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: Proceedings of AAAI 2004, pp. 191–196 (2004)
Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)
Wei, W., Li, C.M.: Switching between two adaptive noise mechanisms in localsearch. In: Booklet of the 2009 SAT Competition (2009)
Wei, W., Li, C.-M., Zhang, H.: Switching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008)
Wu, Z., Wah, B.W.: Trap escaping strategies in discrete lagrangian methods for solving hard satisfiability and maximum satisfiability problems. In: AAAI/IAAI, pp. 673–678 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duong, TT., Pham, D.N., Sattar, A. (2012). A Method to Avoid Duplicative Flipping in Local Search for SAT. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-35101-3_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35100-6
Online ISBN: 978-3-642-35101-3
eBook Packages: Computer ScienceComputer Science (R0)