Skip to main content

The Adjoint Sensitivity Guidance to Diagnosis and Tuning of Error Covariance Parameters

  • Chapter
  • First Online:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Abstract

Adjoint techniques are effective tools for the analysis and optimization of the observation performance on reducing the errors in the forecasts produced by atmospheric data assimilation systems (DASs). This chapter provides a detailed exposure of the equations that allow the extension of the adjoint-DAS applications from observation sensitivity and forecast impact assessment to diagnosis and tuning of parameters in the observation and background error covariance representation. The error covariance sensitivity analysis allows the identification of those parameters of potentially large impact on the forecast error reduction and provides a first-order diagnostic to parameter specification. A proof-of-concept is presented together with comparative results of observation impact assessment and sensitivity analysis obtained with the adjoint versions of the Naval Research Laboratory Atmospheric Variational Data Assimilation System – Accelerated Representer (NAVDAS-AR) and the Navy Operational Global Atmospheric Prediction System (NOGAPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126:1431–1454

    Article  Google Scholar 

  • Baker NL, Langland RH (2009) Diagnostics for evaluating the impact of satellite observations. In Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications. Springer, Berlin, pp 177–196

    Chapter  Google Scholar 

  • Bannister RN (2008a) A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Q J R Meteorol Soc 134:1951–1970

    Article  Google Scholar 

  • Bannister RN (2008b) A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Q J R Meteorol Soc 134:1971–1996

    Article  Google Scholar 

  • Bormann N, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: methods and applications to ATOVS data. Q J R Meteorol Soc 136:1036–1050

    Article  Google Scholar 

  • Bormann N, Collard A, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: applications to AIRS and IASI data. Q J R Meteorol Soc 136:1051–1063

    Article  Google Scholar 

  • Bormann N, Geer AJ, Bauer P (2011) Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction. Q J R Meteorol Soc 137:2014–2023.

    Article  Google Scholar 

  • Brousseau P, Berre L, Bouttier F, Desroziers G (2011) Flow-dependent background-error covariances for a convective-scale data assimilation system. Q J R Meteorol Soc. doi: 10.1002/qj.920

    Google Scholar 

  • Buehner M (2005) Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q J R Meteorol Soc 131:1013–1043

    Article  Google Scholar 

  • Buehner M, Gauthier P, Liu Z (2005) Evaluation of new estimates of background- and observation-error covariances for variational assimilation. Q J R Meteorol Soc 131:3373–3383

    Article  Google Scholar 

  • Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135:239–250

    Article  Google Scholar 

  • Cardinali C, Prates F (2011) Performance measurement with advanced diagnostic tools of all-sky microwave imager radiances in 4D-Var. Q J R Meteorol Soc 137:2038–2046

    Article  Google Scholar 

  • Chapnik B, Desroziers G, Rabier F, Talagrand O (2006) Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q J R Meteorol Soc 132:543–565

    Article  Google Scholar 

  • Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy of operational implementation of 4D-Var using an incremental approach. Q J R Meteorol Soc 120:1367–1388

    Article  Google Scholar 

  • Daescu DN (2008) On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon Weather Rev 136:3050–3065

    Article  Google Scholar 

  • Daescu DN, Todling R (2009) Adjoint estimation of the variation in model functional output due to the assimilation of data. Mon Weather Rev 137:1705–1716

    Article  Google Scholar 

  • Daescu DN, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012

    Article  Google Scholar 

  • Dee DP, Da Silva AM (1999) Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: methodology. Mon Weather Rev 127:1822–1834

    Article  Google Scholar 

  • Desroziers G, Ivanov S (2001) Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q J R Meteorol Soc 127:1433–1452

    Article  Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background, and analysis-error statistics in observation space. Q J R Meteorol Soc 131:3385–3396

    Article  Google Scholar 

  • Desroziers G, Berre L, Chabot V, Chapnik B (2009) A posteriori diagnostics in an ensemble of perturbed analyses. Mon Weather Rev 137:3420–3436

    Article  Google Scholar 

  • Frehlich R (2011) The definition of ‘truth’ for numerical weather prediction error statistics. Q J R Meteorol Soc 137:84–98

    Article  Google Scholar 

  • Garand L, Heilliette S, Buehner M (2007) Interchannel error correlation associated with AIRS radiance observations: inference and impact in data assimilation. J Appl Meteorol 46:714–725

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Gelaro R, Zhu Y (2009) Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus 61A:179–193

    Google Scholar 

  • Gelaro R, Zhu Y, Errico RM (2007) Examination of various-order adjoint-based approximations of observation impact. Meteorol Z 16:685–692

    Article  Google Scholar 

  • Gelaro R, Langland RH, Pellerin S, Todling R (2010) The THORPEX observation impact intercomparison experiment. Mon Weather Rev 138:4009–4025

    Article  Google Scholar 

  • Hogan TF, Rosmond TE (1991) The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon Weather Rev 119:1786–1815

    Article  Google Scholar 

  • Joiner J, Brin E, Treadon R, Derber J, Van Delst P, Da Silva A, Le Marshall J, Poli P, Atlas R, Bungato D, Cruz C (2007) Effects of data selection and error specification on the assimilation of AIRS data. Q J R Meteorol Soc 133:181–196

    Article  Google Scholar 

  • Kalnay, E. (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lahoz W (2010) Research satellites. In: Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, Heidleberg/London, pp 301–321

    Google Scholar 

  • Langland RH (2005) Issues in targeted observing. Q J R Meteorol Soc 131:3409–3425

    Article  Google Scholar 

  • Langland RH, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201

    Google Scholar 

  • Li H, Kalnay E, Miyoshi T (2009) Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Q J R Meteorol Soc 135:523–533

    Article  Google Scholar 

  • Liu J, Kalnay E (2008) Estimating observation impact without adjoint model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327–1335

    Article  Google Scholar 

  • Liu J, Kalnay E, Miyoshi T, Cardinali C (2009) Analysis sensitivity calculation in an ensemble Kalman filter. Q J R Meteorol Soc 135:1842–1851

    Article  Google Scholar 

  • Lorenc AC (2003) Modelling of error covariances by 4D-Var data assimilation. Q J R Meteorol Soc 129:3167–3182

    Article  Google Scholar 

  • Lorenz EN, Emanuel KA (1998) Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci 55:399–414

    Article  Google Scholar 

  • Lupu C, Gauthier P, Laroche S (2011) Evaluation of the impact of observations on analyses in 3D- and 4D-Var based on information content. Mon Weather Rev 139:726–737

    Article  Google Scholar 

  • Rosmond T, Xu L (2006) Development of NAVDAS-AR: non-linear formulation and outer loop tests. Tellus 58A:45–58

    Google Scholar 

  • Thépaut JN, Andersson E (2010) The global observing system. In Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, Heidleberg/London, pp 263–281

    Google Scholar 

  • Trémolet Y (2008) Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus 60A:964–978

    Google Scholar 

  • Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57A:546–559

    Google Scholar 

  • Zhang S, Anderson JL (2003) Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus 55A:126–147

    Google Scholar 

Download references

Acknowledgements

The work of D.N. Daescu was supported by the Naval Research Laboratory Atmospheric Effects, Analysis, and Prediction BAA #75-09-01 under award N00173-10-1-G032 and by the National Science Foundation under award DMS-0914937. Support for the second author from the sponsor ONR PE-0602435N is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacian N. Daescu .

Editor information

Editors and Affiliations

Appendix

Appendix

All vectors are represented in column format and the superscript T denotes the transposition operator. The elementwise (Hadamard) product of two vectors \(\mathbf{u} \in {\mathcal{R}}^{n}\) and \(\mathbf{v} \in {\mathcal{R}}^{n}\) is denoted u ∘ v and is the vector \(\mathbf{w} \in {\mathcal{R}}^{n}\) with entries defined as

$$\mathbf{w} = \mathbf{u} \circ \mathbf{v},\,\,w_{i} = u_{i}v_{i},\,i = 1 : n$$
(9.60)

For two matrices of the same order \(\mathbf{X},\mathbf{Y} \in {\mathcal{R}}^{n\times m}\)

$$\langle \mathbf{X},\mathbf{Y}\rangle _{{\mathcal{R}}^{n\times m}} = Tr\left (\mathbf{X}{\mathbf{Y}}^{\mathrm{T}}\right ) = Tr\left ({\mathbf{X}}^{\mathrm{T}}\mathbf{Y}\right )$$
(9.61)

denotes the Frobenius inner product that is expressed in terms of the matrix trace operator Tr. Given the vectors \(\mathbf{u} \in {\mathcal{R}}^{n}\), \(\mathbf{v} \in {\mathcal{R}}^{m}\), and the matrix \(\mathbf{X} \in {\mathcal{R}}^{n\times m}\),

$$\langle \mathbf{u},\mathbf{X}\mathbf{v}\rangle _{{\mathcal{R}}^{n}} ={ \mathbf{u}}^{\mathrm{T}}\mathbf{X}\mathbf{v} =\langle \mathbf{u}{\mathbf{v}}^{\mathrm{T}},\mathbf{X}\rangle _{{ \mathcal{R}}^{n\times m}}$$
(9.62)

Given a functional \(e : {\mathcal{R}}^{n\times m} \rightarrow \mathcal{R}\) of matrix argument \(\mathbf{X} \in {\mathcal{R}}^{n\times m}\), the sensitivity of e with respect to X is the matrix of the first order partial derivatives denoted as

$$\frac{\partial e} {\partial \mathbf{X}} = \left [ \frac{\partial e} {\partial X_{i,j}}\right ]_{i=1,n;j=1,m} \in {\mathcal{R}}^{n\times m}$$
(9.63)

The first order variation δe induced by a variation δ X is expressed as

$$\delta e = \left \langle \frac{\partial e} {\partial \mathbf{X}},\delta \mathbf{X}\right \rangle _{{\mathcal{R}}^{n\times m}} = Tr\left [ \frac{\partial e} {\partial \mathbf{X}}{(\delta \mathbf{X})}^{\mathrm{T}}\right ]$$
(9.64)

For a nonsingular matrix \(\mathbf{X} \in {\mathcal{R}}^{n\times n}\), the first order variation δ X  − 1 in the inverse matrix X  − 1 induced by a variation δ X is expressed as

$$\delta {\mathbf{X}}^{-1} = -{\mathbf{X}}^{-1}\delta \mathbf{X}{\mathbf{X}}^{-1}$$
(9.65)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daescu, D.N., Langland, R.H. (2013). The Adjoint Sensitivity Guidance to Diagnosis and Tuning of Error Covariance Parameters. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_9

Download citation

Publish with us

Policies and ethics