Skip to main content

Abstract

A comprehensive set of linearized physical parameterizations has been developed for the global ECMWF Integrated Forecasting System. Implications of the linearity constraint for any parametrization scheme, such as the need for simplification and regularization, are discussed. The description of the methodology to develop linearized parameterizations highlights the complexity of obtaining a physics package that can be efficiently used in practical applications. The impact of the different physical processes on the tangent-linear approximation and adjoint sensitivities, as well as their performance in data assimilation are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    T159/T255 corresponding approximately to 130/80 km

  2. 2.

    T1279 corresponding approximately to 16 km

  3. 3.

    T511 corresponding approximately to 40 km

References

  • Araya-Polo M, Hascoët L (2004) Data flow algorithms in the Tapenade tool for automatic differentiation. In: Proceedings of 4th European congresson computational methods, ECCOMAS’2004, Jyvaskyla, Finland

    Google Scholar 

  • Bauer P, Lopez P, Salmond D, Benedetti A, Saarinen S, Bonazzola M (2006) Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. II: 4D-Var. Q J R Meteorol Soc 132:2307–2332

    Article  Google Scholar 

  • Bauer P, Geer AJ, Lopez P, Salmond D (2010) Direct 4D-Var assimilation of all-sky radiances. I: implementation. Q J R Meteorol Soc 136:1868–1885

    Article  Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Bechtold P, Köhler M, Jung T, Leutbecher M, Rodwell M, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351

    Article  Google Scholar 

  • Benedetti A, Janisková M (2008) Assimilation of MODIS cloud optical depths in the ECMWF model. Mon Weather Rev 136:1727–1746

    Article  Google Scholar 

  • Benedetti A, Lopez P, Bauer P, Moreau E (2005) Experimental use of TRMM precipitation radar observations in 1D+4D-Var assimilation. Q J R Meteorol Soc 131:2473–2495

    Article  Google Scholar 

  • Betts A (1997) The parametrization of deep convection: a review. In: Proceedings ECMWF workshop on new insights and approaches to convective parametrization, Reading, 4–7 Nov 1996, pp 166–188

    Google Scholar 

  • Buizza R (1994) Impact of simple vertical diffusion and of the optimisation time on optimal unstable structures. ECMWF technical memorandum, vol 192. ECMWF, Reading, 25p

    Google Scholar 

  • Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135:239–250

    Article  Google Scholar 

  • Cardinali C, Buizza R (2004) Observation sensitivity to the analysis and the forecast: a case study during ATreC targeting campaign. In: Proceedings of the first THORPEX international science symposium, Montreal, Canada, 6–10 Dec 2004. WMO/TD-1237, WWRP/THORPEX No. 6

    Google Scholar 

  • Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Errico RM, Reader KD (1999) An examination of the accuracy of the linearization of a mesoscale model with moist physics. Q J R Meteorol Soc 125:169–196

    Article  Google Scholar 

  • Errico RM, Vukicevic T (1992) Sensitivity analysis using an adjoint of the PSU/NCAR mesoscale model. Mon Weather Rev 120:1644–1660

    Article  Google Scholar 

  • Ebert EE, Curry JA (1992) A parametrization of ice optical properties for climate models. J Geophys Res 97D:3831–3836

    Article  Google Scholar 

  • Fouquart Y (1987) Radiative transfer in climate models. In: Schlesinger ME (eds) Physically based modelling and simulation of climate and climate changes. Kluwer Academic Publishers, Dordrecht/Boston, pp 223–284

    Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere: a new parametrization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fritts DC, VanZandt TE (1993) Spectral estimates of gravity wave energy and momentum fluxes. Part I: energy dissipation, acceleration, and constraints. J Atmos Sci 50:3685–3694

    Article  Google Scholar 

  • Geer AJ, Bauer P, Lopez P (2010) Direct 4D-Var assimilation of all-sky radiances. Part II: assessment. Q J R Meteorol Soc 136:1886–1905

    Article  Google Scholar 

  • Geleyn J-F, Hollingsworth A (1997) An economical and analytical method for the interactions between scattering and line absorption of radiation. Contrib Atmos Phys 52:1–16

    Google Scholar 

  • Geleyn J-F, Banciu D, Bellus M, El Khatib R, Moll P, Saez P, Thépaut J-N (2001) The operational 4D-Var data assimilation system of Météo-France: specific characteristics and behaviour in the special case of the 99 Xmas storms over France. In: Proceedings of 18th conference on weather analysis and forecasting and 14th conference on numerical weather prediction. Ft. Lauderdale, Florida, USA

    Google Scholar 

  • Giering R, Kaminski T (1998) Recipes for adjoint code construction. ACM Trans Math Softw 24(4):437–474

    Article  Google Scholar 

  • Jakob C, Siebesma AP (2003) A new subcloud model for mass flux convection schemes. Influence on triggering, updraught properties and model climate. Mon Weather Rev 131:2765–2778

    Article  Google Scholar 

  • Janisková M (2003) Physical processes in adjoint models: potential pitfalls and benefits. In: Proceedings of ECMWF seminar on recent developments in data assimilation for Atmosphere and Ocean, Reading, UK, 8–12 Sept 2003, pp 179–191

    Google Scholar 

  • Janisková M, Morcrette J-J (2005) Investigation of the sensitivity of the ECMWF radiation scheme to input parameters using adjoint technique. Q J R Meteorol Soc 131:1975–1995

    Article  Google Scholar 

  • Janisková M, Thépaut J-N., Geleyn J-F (1999) Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon Weather Rev 127:26–45

    Article  Google Scholar 

  • Janisková M, Mahfouf J-F, Morcrette J-J, Chevallier F (2002) Linearized radiation and cloud schemes in the ECMWF model: development and evaluation. Q J R Meteorol Soc 128:1505–1527

    Article  Google Scholar 

  • Janisková M, Lopez P, Bauer P (2012) Experimental 1D+4D-Var assimilation of CloudSat observations. Q J R Meteorol Soc 138:1196–1220 doi:10.1002/qj.988

    Article  Google Scholar 

  • Langland RH, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201

    Google Scholar 

  • Laroche S, Tanguay M, Delage Y (2002) Linearization of a simplified planetary boundary layer parametrization. Mon Weather Rev 130:2074–2087

    Article  Google Scholar 

  • Li Z, Navon IM (1998) Adjoin sensitivity of the Earth’s radiation budget in the NCEP medium-range forecasting model. J Geophys Res 103(D4):3801–3814

    Article  Google Scholar 

  • Lopez P (2002) Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Q J R Meteorol Soc 128:229–257

    Article  Google Scholar 

  • Lopez P (2011) Direct 4D-Var Assimilation of NCEP Stage IV Radar and Gauge precipitation data at ECMWF. Mon Weather Rev 139:2098–2116

    Article  Google Scholar 

  • Lopez P (2012) Experimental 4D-Var assimilation of SYNOP rain gauge data at ECMWF. ECMWF technical memorandum, vol 661. European Centre for Medium-Range Weather Forecasts, Reading, 25p

    Google Scholar 

  • Lopez P, Moreau E (2005) A convection scheme for data assimilation: description and initial tests. Q J R Meteorol Soc 131:409–436

    Article  Google Scholar 

  • Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Q J R Meteorol Soc 123:101–127

    Article  Google Scholar 

  • Louis J-F, Tiedtke M, Geleyn J-F (1982) A short history of the PBL parametrization at ECMWF. In: Proceedings ECMWF workshop on planetary boundary layer parameterization, Reading, 25–27 Nov 1981, pp 59–80

    Google Scholar 

  • Mahfouf J-F (1999) Influence of physical processes on the tangent-linear approximation. Tellus 51:147–166

    Article  Google Scholar 

  • Mahfouf J-F (2005) Linearization of a simple moist convection for large-scale NWP models. Mon Weather Rev 133:1655–1670

    Article  Google Scholar 

  • Mahfouf J-F, Rabier F (2000) The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Part II: experimental results with improved physics. Q J R Meteorol Soc 126:1171–1190

    Article  Google Scholar 

  • Mlawer E, Clough SA (1997) Shortwave and longwave enhancements in the rapid radiative transfer model. In: Proceedings of 7th atmospheric radiation measurement (ARM) science team meeting, U.S. Department of Energy, CONF-9603149, available from http://www.arm.gov/publications/proceedings/conf07/title.stm/mlaw-97.pdf

  • Mlawer E, Taubman SJ, Brown PD, Ianoco M, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Morcrette J-J (1989) Description of the radiation scheme in the ECMWF operational weather forecast model. ECMWF technical memorandum, vol 165 ECMWF, Reading, UK

    Google Scholar 

  • Morcrette J-J (1991) Radiation and cloud radiative properties in the ECMWF operational forecast model. J Geophys Res 96D:9121–9132

    Article  Google Scholar 

  • Morcrette J-J, Jakob C (2000) The response of the ECMWF model changes in the cloud overlap assumption. Mon Weather Rev 128:876–887

    Article  Google Scholar 

  • Morcrette J-J, Smith L, Fouquart Y (1986) Pressure and temperature dependence of absorption in longwave radiation parametrizations. Beitr Phys Atmos 59:455–469

    Google Scholar 

  • Morcrette J-J, Mlawer E, Iacono M, Clough S (2001) Impact of the radiation transfer scheme RRTM in the ECMWF forecating system. ECMWF newsletter No. 91, ECMWF, Reading, UK pp 2–9

    Google Scholar 

  • Orr A, Bechtold P, Scinoccia J, Ern M, Janisková M (2010) Improved middle atmosphere climate and analysis in the ECMWF forecasting system through a non-orographic gravity wave parametrization. J Climate 23:5905–5926

    Article  Google Scholar 

  • Phillips SP (1984) Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J Atmos Sci 41:1073–1084

    Article  Google Scholar 

  • Rabier F, Klinker E, Courtier P, Hollingsworth A (1996) Sensitivity of forecast errors to initial conditions. Q J R Meteorol Soc 122:121–150

    Article  Google Scholar 

  • Rabier F, Järvinen H, Klinker E, Mahfouf J-F, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. Part I: experimental results with simplified physics. Q J R Meteorol Soc 126:1143–1170

    Article  Google Scholar 

  • Scinocca JF (2003) An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J Atmos Sci 60:667–682

    Article  Google Scholar 

  • Smith EA, Shi L (1992) Surface forcing of the infrared cooling profile over the Tibetan plateau. Part I: influence of relative longwave radiative heating at high altitude. J Atmos Sci 49:805–822

    Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parametrization studies with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  • Tompkins AM, Janisková M (2004) A cloud scheme for data assimilation: description and initial tests. Q J R Meteorol Soc 130:2495–2517

    Article  Google Scholar 

  • Tsuyuki T (1996) Variational data assimilation in the tropics using precipitation data. Part II: 3-D model. Mon Weather Rev 124:2545–2561

    Article  Google Scholar 

  • Warner CD, McIntyre ME (1996) An ultra-simple spectral parametrization for non-orographic gravity waves. J Atmos Sci 58:1837–1857

    Article  Google Scholar 

  • Washington WM, Williamson DL (1977) A description of the NCAR GCMs. GCMs of the atmosphere. In: Chang J (ed) Methods in computational physics, vol 17. Academy Press, New York, pp 111–172

    Google Scholar 

  • Zhu Y, Gelaro R (2008) Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon Weather Rev 136:335–351

    Article  Google Scholar 

  • Zou X, Navon IM, Sela JG (1993) Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus 45A:370–387

    Google Scholar 

  • Zupanski D, Mesinger F (1995) Four-dimensional variational assimilation of precipitation data. Mon Weather Rev 123:1112–1127

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peter Bauer, Anton Beljaars and Jean-Noël Thépaut for their useful reviews of this paper. The anonymous reviewer is also acknowledged for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Janisková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janisková, M., Lopez, P. (2013). Linearized Physics for Data Assimilation at ECMWF. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_11

Download citation

Publish with us

Policies and ethics