Skip to main content

Introduction and Background

  • Chapter
  • First Online:
Transition-Metal Defects in Silicon

Part of the book series: Springer Theses ((Springer Theses))

  • 582 Accesses

Abstract

The silicon (Si) crystal has the diamond structure, in which each Si atom is placed at the centre of a tetrahedron consisting of its four nearest neighbours. In doing this, Si creates a face-centered cubic lattice (fcc) with its two basis atoms located at the origin (0,0,0) and at one quarter length along the diagonal [111] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, group III, vol. 22. Semiconductors (Springer, Berlin, 1989)

    Google Scholar 

  2. R.H. Hopkins, R.G. Seidensticker, J.R. Davis, P. Rai-Choudhury, P.D. Blais, J.R. McCormick, Crystal growth considerations in the use of solar grade silicon. J. Cryst. Growth 42, 493–498 (1977)

    Article  ADS  Google Scholar 

  3. A. Rohatgi, J.R. Davis, R.H. Hopkins, P. Rai-Choudhury, P.G. McMullin, J.R. McCormick, Effect of titanium, copper and iron on silicon solar cells. Solid-State Electron. 23, 415–422 (1980)

    Article  ADS  Google Scholar 

  4. K. Graff, Metal Impurities in Silicon-Device Fabrication (Springer, Berlin, 2000)

    Book  Google Scholar 

  5. G. Davies, Configurational instabilities at isoelectronic centres in silicon. Phys. Scr. T54, 7 (1994)

    Article  ADS  Google Scholar 

  6. A.A. Istratov, E.R. Weber, Physics of copper in silicon. J. Electrochem. Soc. 149, G21–G30 (2002)

    Article  Google Scholar 

  7. T.G. Brown, D.G. Hall, Optical emission at 1.32 \(\mu \)m from sulfur-doped crystalline silicon. Appl. Phys. Lett. 49, 245–247 (1986)

    Article  ADS  Google Scholar 

  8. N. Minaev, A. Mudryi, V. Tkachev, Radiative recombination at thermal defects in silicon. Sov. Phys. Semicond. 13, 233 (1979)

    Google Scholar 

  9. J. Weber, H. Bauch, R. Sauer, Optical properties of copper in silicon: Excitons bound to isoelectronic copper pairs. Phys. Rev. B 25, 7688–7699 (1982)

    Article  ADS  Google Scholar 

  10. M. Singh, W. Chen, N. Son, B. Monemar, E. Janzén, Shallow excited states of deep luminescent centers in silicon. Solid State Commun. 93, 415–418 (1995)

    Article  ADS  Google Scholar 

  11. J. Weber, P. Wagner, Photoluminescence from deep states associated with Iron in silicon. J. Phys. Soc. Jpn. 49, Suppl. A, 263–266 (1980)

    Google Scholar 

  12. M. Nakamura, S. Ishiwari, A. Tanaka, Number of Cu atom(s) in the 1.014 eV photoluminescence copper center and the center’s model in silicon crystal. Appl. Phys. Lett. 73, 2325–2327 (1998)

    Article  ADS  Google Scholar 

  13. M. Henry, S. Daly, C. Frehill, E. McGlynn, C. McDonagh, in A Photoluminescence Study of Gold- and Platinum-Related Defects in Silicon Using Radioactive Transformations, ed. by M. Scheffler, R. Zimmermann. Physics of Semiconductors: 23rd International Conference on the Physics of Semiconductors-ICPS, pp. 2713–2716 (1996)

    Google Scholar 

  14. H.B. Erzgräber, K. Schmalz, Correlation between the Cu-related luminescent center and a deep level in silicon. J. Appl. Phys. 78, 4066–4068 (1995)

    Article  ADS  Google Scholar 

  15. D. Karaiskaj, M. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G. Deviatych, P. Sennikov, H. Riemann, Photoluminescence of isotopically purified silicon: how sharp are bound exciton transitions? Phys. Rev. Lett. 86, 6010–6013 (2001)

    Article  ADS  Google Scholar 

  16. D. Karaiskaj, J. Stotz, T. Meyer, M. Thewalt, M. Cardona, Impurity absorption spectroscopy in \(^{28}\)Si: the importance of inhomogeneous isotope broadening. Phys. Rev. Lett. 90, 186402 (2003)

    Article  ADS  Google Scholar 

  17. D. Karaiskaj, M. Thewalt, T. Ruf, M. Cardona, M. Konuma, Photoluminescence studies of isotopically enriched silicon: isotopic effects on the indirect electronic band gap and phonon energies. Solid State Commun. 123, 87–92 (2002)

    Article  ADS  Google Scholar 

  18. D. Karaiskaj, M.L.W. Thewalt, T. Ruf, M. Cardona, Photoluminescence studies of isotopically enriched silicon. Phys. Stat. Sol. B 235, 63–74 (2003)

    Article  ADS  Google Scholar 

  19. M. Cardona, M. Thewalt, Isotope effects on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173 (2005)

    Article  ADS  Google Scholar 

  20. M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, K.M. Itoh, in Shallow Impurity Absorption Spectroscopy in Isotopically Enriched Silicon, ed. by W. Jantsch, F. Schaffler. AIP Conference Proceedings 893, pp. 231–232 (2007)

    Google Scholar 

  21. M. Steger, A. Yang, D. Karaiskaj, M. Thewalt, E. Haller, J. Ager III, M. Cardona, H. Riemann, N. Abrosimov, A. Gusev, A. Bulanov, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, Shallow impurity absorption spectroscopy in isotopically enriched silicon. Phys. Rev. B 79, 205210 (2009)

    Article  ADS  Google Scholar 

  22. M. Steger, A. Yang, M. Thewalt, M. Cardona, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, J. Ager III, E. Haller, Impurity absorption spectroscopy of the deep double donor sulfur in isotopically enriched silicon. Physica B 401–402, 600–603 (2007)

    Article  Google Scholar 

  23. M. Steger, A. Yang, M. Thewalt, M. Cardona, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, E. Haller, J. Ager III, High-resolution absorption spectroscopy of the deep impurities S and Se in \(^{28}\)Si revealing the \(^{77}\)Se hyperfine splitting. Phys. Rev. B 80, 115204 (2009)

    Article  ADS  Google Scholar 

  24. M. Thewalt, Spectroscopy of excitons and shallow impurities in isotopically enriched silicon–electronic properties beyond the virtual crystal approximation. Solid State Commun. 133, 715–725 (2005)

    Article  ADS  Google Scholar 

  25. M.L.W. Thewalt, T.A. Meyer, D. Karaiskaj, M. Cardona, E.E. Haller, J.W. Ager III, H. Riemann, in Progress in Semiconductor Spectroscopy Using Isotopically Enriched Si, ed. by J. Menéndez, C.G.V. de Walle. AIP Conference Proceedings 772, pp. 67–68 (2005)

    Google Scholar 

  26. T. Sekiguchi, M. Steger, K. Saeedi, M.L.W. Thewalt, H. Riemann, N.V. Abrosimov, N. Nötzel, Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi Donors in natural Si. Phys. Rev. Lett. 104, 137402 (2010)

    Article  ADS  Google Scholar 

  27. A. Yang, M. Steger, D. Karaiskaj, M. Thewalt, M. Cardona, K. Itoh, H. Riemann, N. Abrosimov, M.F. Churbanov, A. Gusev, A. Bulanov, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, J. Ager III, E.E. Haller, Optical detection and ionization of donors in specific electronic and nuclear spin states. Phys. Rev. Lett. 97, 227401 (2006)

    Google Scholar 

  28. M. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N. Abrosimov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H. Pohl, E. Haller, J. Ager III, K. Itoh, Direct observation of the donor nuclear spin in a near-gap bound exciton transition: \(^{31}\)P in highly enriched \(^{28}\)Si. J. Appl. Phys. 101, 081724 (2007)

    Article  ADS  Google Scholar 

  29. A. Yang, M. Steger, T. Sekiguchi, M.L.W. Thewalt, T.D. Ladd, K.M. Itoh, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009)

    Article  ADS  Google Scholar 

  30. A. Yang, M. Steger, M.L.W. Thewalt, T.D. Ladd, K.M. Itoh, E.E. Haller, J.W. Ager III, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, in Nuclear Polarization of Phosphorus Donors in \(^{28}\)Si by Selective Optical Pumping, ed. by M. Caldas, N. Studart. AIP Conference Proceedings 1199, pp. 375–376 (2010)

    Google Scholar 

  31. M. Steger, T. Sekiguchi, A. Yang, K. Saeedi, M.E. Hayden, M.L.W. Thewalt, K.M. Itoh, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, Optically detected NMR of optically hyperpolarized \(^{31}\)P neutral donors in \(^{28}\)Si. J. Appl. Phys. 109, 102411 (2011)

    Article  ADS  Google Scholar 

  32. M. Thewalt, M. Steger, A. Yang, M. Cardona, H. Riemann, N.V. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, Can highly enriched \(^{28}\)Si reveal new things about old defects? Phys. B 401–402, 587–592 (2007)

    Article  Google Scholar 

  33. A. Yang, M. Steger, M. Thewalt, M. Cardona, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, J. Ager III, E. Haller, High resolution photoluminescence of sulphur- and copper-related isoelectronic bound excitons in highly enriched \(^28\)Si. Phys. B 401–402, 593–596 (2007)

    Article  Google Scholar 

  34. M. Steger, A. Yang, N. Stavrias, M. Thewalt, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, Reduction of the linewidths of deep luminescence centers \({\rm in}\,^{28}\)Si reveals fingerprints of the isotope constituents. Phys. Rev. Lett. 100, 177402 (2008)

    Google Scholar 

  35. M. Steger, A. Yang, M.L.W. Thewalt, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, in High Resolution Photoluminescence of Copper, Silver, Gold and Lithium-Related Isoelectronic Bound Excitons in Highly Enriched \(^{28}\)Si, ed. by M. Caldas, N. Studart. AIP Conference Proceedings 1199, pp. 33–34 (2010)

    Google Scholar 

  36. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. Thewalt, M. Henry, K. Johnston, H. Riemann, N.V. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kaliteevski, O. Godisov, P. Becker, H.-J. Pohl, Isotopic fingerprints of gold-containing luminescence centers in \(^{28}\)Si. Phys. B 404, 5050–5053 (2009)

    Article  ADS  Google Scholar 

  37. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M.L.W. Thewalt, M.O. Henry, K. Johnston, E. Alves, U. Wahl, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, Isotopic fingerprints of Pt-containing luminescence centers in highly enriched \(^{28}\)Si. Phys. Rev. B 81, 235217 (2010)

    Google Scholar 

  38. G. Davies, The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83–188 (1989)

    Article  ADS  Google Scholar 

  39. K. Shirai, H. Yamaguchi, A. Yanase, H. Katayama-Yoshida, A new structure of Cu complex in Si and its photoluminescence. J. Phys. Cond. Mat. 21, 064249 (2009)

    Article  ADS  Google Scholar 

  40. K. Shirai, H. Yamaguchi, J. Ishisada, K. Matsukawa, A. Yanase, S. Emura, in Cu Complex in Silicon and Its Photoluminescence, ed. by M. Caldas, N. Studart. AIP Conference Proceedings 1199, pp. 91–92 (2010)

    Google Scholar 

  41. M. Nakamura, S. Murakami, N.J. Kawai, S. Saito, K. Matsukawa, H. Arie, Compositional transformation between Cu centers by annealing in Cu-diffused silicon crystals studied with deep-level transient spectroscopy and photoluminescence. Jpn. J. Appl. Phys. 48, 082302 (2009)

    Article  ADS  Google Scholar 

  42. M. Nakamura, S. Murakami, Deep-level transient spectroscopy and photoluminescence studies of formation and depth profiles of copper centers in silicon crystals diffused with dilute copper. Jpn. J. Appl. Phys. 49, 071302 (2010)

    Article  ADS  Google Scholar 

  43. S.K. Estreicher, A. Carvalho, The Cu\(_{\text{ PL}}\) Defect and the Cu\(_{\text{ s1}}\)Cu\(_{\text{ i3}}\) Complex. Phys. B: Cond. Mat. 407(15), 2967–2969 (2012)

    Google Scholar 

  44. A. Carvalho, D.J. Backlund, S.K. Estreicher, Four-copper complexes in Si and the Cu\(_\text{ PL}\) defect: a first-principles study. Phys. Rev. B 84, 155322 (2011)

    Article  ADS  Google Scholar 

  45. J.R. Haynes, Experimental proof of the existence of a new electronic complex in silicon. Phys. Rev. Lett. 4, 361–363 (1960)

    Article  ADS  Google Scholar 

  46. P.J. Dean, W.F. Flood, G. Kaminsky, Absorption due to bound excitons in silicon. Phys. Rev. 163, 721–725 (1967)

    Article  ADS  Google Scholar 

  47. D.F. Nelson, J.D. Cuthbert, P.J. Dean, D.G. Thomas, Auger recombination of excitons bound to neutral donors in gallium phosphide and silicon. Phys. Rev. Lett. 17, 1262–1265 (1966)

    Article  ADS  Google Scholar 

  48. W. Schmid, Auger lifetimes for excitons bound to neutral donors and acceptors in Si. Phys. Stat. Sol. B 84, 529 (1977)

    Article  ADS  Google Scholar 

  49. P.J. Dean, D.C. Herbert, in Bound Excitons in Semiconductors, Topics in Current Physics: Excitons, ed. by K. Cho. vol. 14 (Springer, Berlin, 1979) p. 55

    Google Scholar 

  50. M. Thewalt, in Excitons, ed. by E.I. Rashba, M.D. Sturge (North Holland, Amsterdam, 1982), pp. 393–458

    Google Scholar 

  51. R.E. Dietz, D.G. Thomas, J.J. Hopfield, Mirror absorption and fluorescence in ZnTe. Phys. Rev. Lett. 8, 391–393 (1962)

    Article  ADS  Google Scholar 

  52. D.G. Thomas, J.J. Hopfield, C.J. Frosch, Isoelectronic traps due to nitrogen in gallium phosphide. Phys. Rev. Lett. 15, 857–860 (1965)

    Article  ADS  Google Scholar 

  53. F.A. Trumbore, M. Gershenzon, D.G. Thomas, Luminescence due to the isoelectronic substitution of bismuth for phosphorus in gallium phosphide. Appl. Phys. Lett. 9, 4–6 (1966)

    Article  ADS  Google Scholar 

  54. J.J. Hopfield, D.G. Thomas, R.T. Lynch, Isoelectronic donors and acceptors. Phys. Rev. Lett. 17, 312–315 (1966)

    Article  ADS  Google Scholar 

  55. A. Baldereschi, J.J. Hopfield, Binding to isoelectronic impurities in semiconductors. Phys. Rev. Lett. 28, 171–174 (1972)

    Article  ADS  Google Scholar 

  56. R. Sauer, J. Weber, Photoluminescence characterisation of deep defects in silicon. Phys. B+C 116, 195 (1983)

    Google Scholar 

  57. E.C. Lightowlers, G. Davies, Spectroscopy of excitons bound to isoelectronic defect complexes in silicon. Solid State Commun. 53, 1055–1060 (1985)

    Article  ADS  Google Scholar 

  58. B. Monemar, U. Lindefelt, W.M. Chen, Electronic structure of bound excitons in semiconductors. Phys. B+C 146, 256–285 (1987)

    Google Scholar 

  59. H. Conzelmann, Photoluminescence of transition metal complexes in silicon. Appl. Phys. A 42, 1–18 (1987)

    Article  ADS  Google Scholar 

  60. B. Monemar, Electronic structure and bound excitons for defects in semiconductors from optical spectroscopy. Crit. Rev. Solid State Ma. Sci. 15, 111–151 (1988)

    Article  ADS  Google Scholar 

  61. J. Weber, W. Schmid, R. Sauer, Excitons bound to an isoelectronic trap in silicon. J. Lumin. 18–19, 93–96 (1979)

    Article  Google Scholar 

  62. J. Weber, W. Schmid, R. Sauer, Localized exciton bound to an isoelectronic trap in silicon. Phys. Rev. B 21, 2401–2414 (1980)

    Article  ADS  Google Scholar 

  63. R. Sauer, J. Weber, W. Zulehner, Nitrogen in silicon: towards the identification of the 1.1223-eV (A, B, C) photoluminescence lines. Appl. Phys. Lett. 44, 440–442 (1984)

    Article  ADS  Google Scholar 

  64. R.A. Modavis, D.G. Hall, Aluminum-nitrogen isoelectronic trap in silicon. J. Appl. Phys. 67, 545–547 (1990)

    Article  ADS  Google Scholar 

  65. J. Wagner, R. Sauer, Acceptorlike excited states of the isoelectronic A, B, C exciton system in silicon. Phys. Rev. B 26, 3502–3505 (1982)

    Article  ADS  Google Scholar 

  66. G.S. Mitchard, S.A. Lyon, K.R. Elliott, T.C. McGill, Observation of long lifetime lines in photoluminescence from Si:In. Solid State Commun. 29, 425–429 (1979)

    Article  ADS  Google Scholar 

  67. J. Weber, R. Sauer, P. Wagner, Photoluminescence from a thermally induced indium complex in silicon. J. Lumin. 24–25, 155–158 (1981)

    Article  Google Scholar 

  68. M.L.W. Thewalt, U.O. Ziemelis, P.R. Parsons, Enhancement of long lifetime lines in photoluminescence from Si:In. Solid State Commun. 39, 27–30 (1981)

    Article  ADS  Google Scholar 

  69. M.L.W. Thewalt, U.O. Ziemelis, R.R. Parsons, Isoelectronic bound excitons in silicon: the role of deep acceptors. Phys. Rev. B 24, 3655–3658 (1981)

    Article  ADS  Google Scholar 

  70. T.E. Schlesinger, T.C. McGill, Role of Fe in new luminescence lines in Si:Tl and Si:In. Phys. Rev. B 25, 7850–7851 (1982)

    Article  ADS  Google Scholar 

  71. S. Watkins, M. Thewalt, T. Steiner, Isoelectronic bound excitons in In- and Tl-doped Si: a novel semiconductor defect. Phys. Rev. B 29, 5727–5738 (1984)

    Article  ADS  Google Scholar 

  72. H. Conzelmann, A. Hangleiter, J. Weber, Thallium-related isoelectronic bound excitons in silicon. A bistable defect at low temperatures. Phys. Stat. Sol. B 133, 655–668 (1986)

    Google Scholar 

  73. T. Schlesinger, R. Hauenstein, R. Feenstra, T. McGill, Isotope shifts for the P, Q, R lines in Indium-Doped silicon. Solid State Commun. 46, 321–324 (1983)

    Article  ADS  Google Scholar 

  74. S. Watkins, U. Ziemelis, M. Thewalt, Long lifetime photoluminescence from a deep centre in copper-doped silicon. Solid State Commun. 43, 687–690 (1982)

    Article  ADS  Google Scholar 

  75. M.O. Henry, E.C. Lightowlers, N. Killoran, D.J. Dunstan, B.C. Cavenett, Bound exciton recombination in beryllium-doped silicon. J. Phys. C 14, L255 (1981)

    Article  ADS  Google Scholar 

  76. R.K. Crouch, J.B. Robertson, T.E. Gilmer, Study of Beryllium and Beryllium-Lithium complexes in single-crystal silicon. Phys. Rev. B 5, 3111–3119 (1972)

    Article  ADS  Google Scholar 

  77. G. Davies, A simple model for excitons bound to axial isoelectronic defects in silicon. J. Phys. C 17, 6331 (1984)

    Article  ADS  Google Scholar 

  78. M.O. Henry, K.G. McGuigan, M.C. do Carmo, M.H. Nazare, E.C. Lightowlers, A photoluminescence investigation of local mode vibrations of the beryllium pair centre in silicon. J. Phys. Cond. Mat. 2, 9697 (1990)

    Google Scholar 

  79. M.O. Henry, K.A. Moloney, J. Treacy, F.J. Mulligan, E.C. Lighowlers, Uniaxial stress studies of the be pair bound exciton absorption spectrum in silicon. J. Phys. C 17, 6245 (1984)

    Article  ADS  Google Scholar 

  80. T. Ishikawa, T. Sekiguchi, K. Yoshizawa, K. Naito, M.L.W. Thewalt, K.M. Itoh, Zeeman photoluminescence spectroscopy of isoelectronic beryllium pairs in silicon. Solid State Commun. 150, 1827–1830 (2010)

    Article  ADS  Google Scholar 

  81. N. Killoran, D.J. Dunstan, M.O. Henry, E.C. Lightowlers, B.C. Cavenett, The isoelectronic centre in beryllium-doped silicon. I. Zeeman study. J. Phys. C 15, 6067 (1982)

    ADS  Google Scholar 

  82. S. Kim, I.P. Herman, K.L. Moore, D.G. Hall, J. Bevk, Use of hydrostatic pressure to resolve phonon replicalike features in the photoluminescence spectrum of beryllium-doped silicon. Phys. Rev. B 52, 16309–16312 (1995)

    Article  ADS  Google Scholar 

  83. S. Kim, I.P. Herman, K.L. Moore, D.G. Hall, J. Bevk, Hydrostatic pressure dependence of isoelectronic bound excitons in beryllium-doped silicon. Phys. Rev. B 53, 4434–4442 (1996)

    Article  ADS  Google Scholar 

  84. D. Labrie, T. Timusk, M.L.W. Thewalt, Far-infrared absorption spectrum of be-related bound excitons in silicon. Phys. Rev. Lett. 52, 81–84 (1984)

    Article  ADS  Google Scholar 

  85. E. Tarnow, S.B. Zhang, K.J. Chang, D.J. Chadi, Theory of Be-induced defects in Si. Phys. Rev. B 42, 11252–11260 (1990)

    Article  ADS  Google Scholar 

  86. M.L.W. Thewalt, S.P. Watkins, U.O. Ziemelis, E.C. Lightowlers, M.O. Henry, Photoluminescence lifetime, absorption and excitation spectroscopy measurements on isoelectronic bound excitons in beryllium-doped silicon. Solid State Commun. 44, 573–577 (1982)

    Article  ADS  Google Scholar 

  87. J.H. Svensson, B. Monemar, E. Janzén, Pseudodonor electronic excited states of neutral complex defects in silicon. Phys. Rev. Lett. 65, 1796–1799 (1990)

    Article  ADS  Google Scholar 

  88. J. Olajos, M. Kleverman, H. Grimmeiss, High-resolution spectroscopy of silver-doped silicon. Phys. Rev. B 38, 10633–10640 (1988)

    Article  ADS  Google Scholar 

  89. F. Bassani, G. Iadonisi, B. Preziosi, Electronic impurity levels in semiconductors. Rep. Prog. Phys. 37, 1099 (1974)

    Article  ADS  Google Scholar 

  90. E. Janzen, R. Stedman, G. Grossmann, H. Grimmeiss, High-resolution studies of sulfur- and selenium-related donor centers in silicon. Phys. Rev. B 29, 1907–1918 (1984)

    Article  ADS  Google Scholar 

  91. G. Armelles, J. Barrau, M. Brousseau, B. Pajot, C. Naud, Effective mass-like states of the deep acceptor level of Au and Pt in silicon. Solid State Commun. 56, 303–305 (1985)

    Article  ADS  Google Scholar 

  92. M. Kleverman, J. Olajos, H.G. Grimmeiss, Observation of \(P_{1/2}\) resonant states and Fano resonances of the deep gold acceptor in silicon. Phys. Rev. B 35, 4093–4094 (1987)

    Article  ADS  Google Scholar 

  93. M. Kleverman, J. Olajos, H.G. Grimmeiss, Phonon interactions at the deep platinum acceptor in silicon. Phys. Rev. B 37, 2613–2617 (1988)

    Article  ADS  Google Scholar 

  94. J.V.W. Morgan, T.N. Morgan, Stress effects on excitons bound to axially symmetric defects in semiconductors. Phys. Rev. B 1, 739–749 (1970)

    Article  ADS  Google Scholar 

  95. H.D. Mohring, J. Weber, R. Sauer, Photoluminescence of excitons bound to an isoelectronic trap in silicon associated with boron and iron. Phys. Rev. B 30, 894–904 (1984)

    Article  ADS  Google Scholar 

  96. G. Davies, T. Gregorkiewicz, M. Zafar Iqbal, M. Kleverman, E. Lightowlers, N. Vinh, M. Zhu, Optical properties of a silver-related defect in silicon. Phys. Rev. B 67, 235111 (2003)

    Article  ADS  Google Scholar 

  97. K. Nishikawa, R. Barrie, Phonon broadening of impurity spectral lines. I. General theory. Can. J. Phys. 41, 1135 (1963)

    Article  ADS  MATH  Google Scholar 

  98. R. Barrie, K. Nishikawa, Phonon broadening of impurity spectral lines. II. Application to silicon. Can. J. Phys. 41, 1823 (1963)

    Article  ADS  Google Scholar 

  99. M. Thewalt, D. Brake, Ultra-high resolution photoluminescence studies of bound excitons and multi-bound exciton complexes in silicon. Mat. Sci. Forum 65–66, 187–198 (1990)

    Google Scholar 

  100. D. Karaiskaj, T. Meyer, M. Thewalt, M. Cardona, Dependence of the ionization energy of shallow donors and acceptors in silicon on the host isotopic mass. Phys. Rev. B 68, 121201(R) (2003)

    Google Scholar 

  101. A.T. Collins, S.C. Lawson, G. Davies, H. Kanda, Indirect energy gap of \(^{13}\)C diamond. Phys. Rev. Lett. 65, 891–894 (1990)

    Google Scholar 

  102. C. Parks, A.K. Ramdas, S. Rodriguez, K.M. Itoh, E.E. Haller, Electronic band structure of isotopically pure germanium: modulated transmission and reflectivity study. Phys. Rev. B 49, 14244–14250 (1994)

    Article  ADS  Google Scholar 

  103. D. Karaiskaj, M.L.W. Thewalt, T. Ruf, M. Cardona, M. Konuma, Intrinsic acceptor ground state splitting in silicon: an Isotopic effect. Phys. Rev. Lett. 89, 016401 (2002)

    Article  ADS  Google Scholar 

  104. M. Cardona, T.A. Meyer, M.L.W. Thewalt, Temperature dependence of the energy gap of semiconductors in the low-temperature limit. Phys. Rev. Lett. 92, 196403 (2004)

    Article  ADS  Google Scholar 

  105. E.S. Johnson, W.D. Compton, J.R. Noonan, B.G. Streetman, Recombination luminescence from electron-irradiated Li-diffused Si. J. Appl. Phys. 44, 5411–5418 (1973)

    Article  ADS  Google Scholar 

  106. L. Canham, G. Davies, E.C. Lightowlers, The 1.045 eV vibronic band in silicon doped with lithium. J. Phys. C: Solid State Phys. 13, L757 (1980)

    Article  ADS  Google Scholar 

  107. L. Canham, G. Davies, E. Lightowlers, The 1.045 eV vibronic band in irradiated silicon doped with lithium. Inst. Phys. Conf. Ser. 59, 211–216 (1981)

    Google Scholar 

  108. V. Heine, C.H. Henry, Theory of the isotope shift for zero-phonon optical transitions at traps in semiconductors. Phys. Rev. B 11, 3795–3803 (1975)

    Article  ADS  Google Scholar 

  109. T.N. Morgan, B. Welber, R.N. Bhargava, Optical properties of Cd-O and Zn-O complexes in GaP. Phys. Rev. 166, 751–753 (1968)

    Article  ADS  Google Scholar 

  110. G. Davies, M. Zafar Iqbal, E.C. Lightowlers, Exciton self-trapping at an isoelectronic center in silicon. Phys. Rev. B 50, 11520–11530 (1994)

    Article  ADS  Google Scholar 

  111. G. Davies, M. do Carmo, Vibronic coupling in shallow excited states of optical centres in silicon. Inst. Phys. Conf. Ser. 95, 125–130 (1989)

    Google Scholar 

  112. S. Estreicher, D. West, J. Goss, S. Knack, J. Weber, First-principles calculations of pseudolocal vibrational modes: the case of Cu and Cu pairs in Si. Phys. Rev. Lett. 90, 035504 (2003)

    Article  ADS  Google Scholar 

  113. S.K. Estreicher, First-principles theory of copper in silicon. Mat. Sci. Semicond. Process. 7, 101–111 (2004)

    Article  Google Scholar 

  114. S. Estreicher, Rich chemistry of copper in crystalline silicon. Phys. Rev. B 60, 5375–5382 (1999)

    Article  ADS  Google Scholar 

  115. S. Estreicher, D. West, J. Pruneda, S. Knack, J. Weber, Formation and properties of three copper pairs in silicon. Mat. Res. Soc. Symp. Proc. 719, 421–426 (2002)

    Google Scholar 

  116. S. Estreicher, D. West, M. Sanati, \(^\star \)Cu\(_0\): A metastable configuration of the Cu\(_\text{ s}\)-Cu\(_\text{ i}\) pair in Si. Phys. Rev. B 72, 121201 (2005)

    Article  ADS  Google Scholar 

  117. S. Knack, Copper-related defects in silicon. Mat. Sci. Semicond. Process. 7, 125–141 (2004)

    Article  Google Scholar 

  118. E.R. Weber, Transition metals in silicon. Appl. Phys. A 30, 1–22 (1983)

    Article  ADS  Google Scholar 

  119. M. Datta, Applications of electrochemical microfabrication: an introduction. IBM J. Res. Dev. 42, 563–566 (1998)

    Article  Google Scholar 

  120. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron contamination in silicon technology. Appl. Phys. A 70, 489–534 (2000)

    Article  ADS  Google Scholar 

  121. R.N. Hall, J.H. Racette, Diffusion and solubility of copper in extrinsic and intrinsic Germanium, Silicon, and Gallium Arsenide. J. Appl. Phys. 35, 379–397 (1964)

    Article  ADS  Google Scholar 

  122. A.A. Istratov, C. Flink, H. Hieslmair, E.R. Weber, T. Heiser, Intrinsic diffusion coefficient of interstitial Copper in Silicon. Phys. Rev. Lett. 81, 1243–1246 (1998)

    Article  ADS  Google Scholar 

  123. M.H. Rashid, Power Electronics Handbook: Devices, Circuits, and Applications (Academic Press, Burlington, 2007)

    Google Scholar 

  124. K. Graff, H. Pieper, in Semiconductor Silicon, ed. by H.R. Ruff, R.S. Kriegler, Y. Takeishi (Electrochemical Society, Pennington, 1981)

    Google Scholar 

  125. H. Reiss, C.S. Fuller, F.J. Morin, Bell Syst. Tech. J. 35, 535 (1956)

    Google Scholar 

  126. J.D. Struthers, Solubility and diffusivity of Gold, Iron, and Copper in Silicon. J. Appl. Phys. 27, 1560–1560 (1956)

    Article  ADS  Google Scholar 

  127. R. Keller, M. Deicher, W. Pfeiffer, H. Skudlik, D. Steiner, T. Wichert, Copper in silicon. Phys. Rev. Lett. 65, 2023–2026 (1990)

    Article  ADS  Google Scholar 

  128. A. Mesli, T. Heiser, Defect reactions in copper-diffused and quenched p-type silicon. Phys. Rev. B 45, 11632–11641 (1992)

    Article  ADS  Google Scholar 

  129. T. Heiser, A. Mesli, Determination of the copper diffusion coefficient in silicon from transient ion-drift. Appl. Phys. A 57, 325–328 (1993)

    Article  ADS  Google Scholar 

  130. A. Mesli, T. Heiser, E. Mulheim, Copper diffusivity in silicon: a re-examination. Mat. Sci. Eng. B 25, 141–146 (1994)

    Google Scholar 

  131. P. Wagner, H. Hage, H. Prigge, T. Prescha, J. Weber, in Semiconductor Silicon, ed. by H.R. Huff, K.G. Barraclough, J.-I. Chikawa (Electrochemical Society, Pennington, 1990), p. 675

    Google Scholar 

  132. D.E. Woon, D.S. Marynick, S.K. Estreicher, Titanium and copper in Si: barriers for diffusion and interactions with hydrogen. Phys. Rev. B 45, 13383–13389 (1992)

    Article  ADS  Google Scholar 

  133. H. Prigge, P. Gerlach, P.O. Hahn, A. Schnegg, H. Jacob, Acceptor compensation in silicon induced by chemomechanical polishing. J. Electrochem. Soc. 138, 1385–1389 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steger .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steger, M. (2013). Introduction and Background. In: Transition-Metal Defects in Silicon. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35079-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35079-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35078-8

  • Online ISBN: 978-3-642-35079-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics