A Framework for Distributed Managing Uncertain Data in RFID Traceability Networks

  • Jiangang Ma
  • Quan Z. Sheng
  • Damith Ranasinghe
  • Jen Min Chuah
  • Yanbo Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7651)


The ability to track and trace individual items, especially through large-scale and distributed networks, is the key to realizing many important business applications such as supply chain management, asset tracking, and counterfeit detection. Networked RFID (radio frequency identification), which uses the Internet to connect otherwise isolated RFID systems and software, is an emerging technology to support traceability applications. Despite its promising benefits, there remains many challenges to be overcome before these benefits can be realized. One significant challenge centers around dealing with uncertainty of raw RFID data. In this paper, we propose a novel framework to effectively manage the uncertainty of RFID data in large scale traceability networks. The framework consists of a global object tracking model and a local RFID data cleaning model. In particular, we propose a Markov-based model for tracking objects globally and a particle filter based approach for processing noisy, low-level RFID data locally. Our implementation validates the proposed approach and the experimental results show its effectiveness.


RFID Internet of Things Uncertainty Traceability Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nath, B., Reynolds, F., Want, R.: Rfid technology and applications. IEEE Pervasive Computing 5, 22–24 (2006)CrossRefGoogle Scholar
  2. 2.
    Wu, Y., Ranasinghe, D.C., Sheng, Q.Z., Zeadally, S., Yu, J.: RFID Enabled Traceability Networks: A Survey. Distributed and Parallel Databases 29, 397–443 (2011)CrossRefGoogle Scholar
  3. 3.
    Franklin, M., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: The hifi approach. In: Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research, CIDR 2005 (2005)Google Scholar
  4. 4.
    Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive rfid data sets. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, pp. 83–83. IEEE (2006)Google Scholar
  5. 5.
    Ilic, A., Andersen, T., Michahelles, F.: Increasing supply-chain visibility with rule-based rfid data analysis. IEEE Internet Computing 13, 31–38 (2009)CrossRefGoogle Scholar
  6. 6.
    Roussos, G., Duri, S., Thompson, C.: Rfid meets the internet. IEEE Internet Computing 13, 11–13 (2009)CrossRefGoogle Scholar
  7. 7.
    Jeffery, S., Franklin, M., Garofalakis, M.: An adaptive rfid middleware for supporting metaphysical data independence. The VLDB Journal 17, 265–289 (2008)CrossRefGoogle Scholar
  8. 8.
    Sheng, Q., Li, X., Zeadally, S.: Enabling next-generation rfid applications: Solutions and challenges. Computer 41, 21–28 (2008)CrossRefGoogle Scholar
  9. 9.
    Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. IEEE Pervasive Computing 2(3), 24–33 (2003)CrossRefGoogle Scholar
  10. 10.
    Russell, S.: Artificial intelligence: A modern approach, December 30 (2002)Google Scholar
  11. 11.
    Ng, B., Peshkin, L., Pfeffer, A.: Factored particles for scalable monitoring. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 370–377 (2002)Google Scholar
  12. 12.
  13. 13.
    Wu, Y., Sheng, Q., Ranasinghe, D.: P2p object tracking in the internet of things. In: Proceedings of International Conference on Parallel Processing (ICPP 2011), pp. 502–511. IEEE (2011)Google Scholar
  14. 14.
    Cambridge University: Serial-level inventory tracking model. Bridge WP03, Cambridge University, BT Research (2007)Google Scholar
  15. 15.
    Nie, Y., Cocci, R., Cao, Z., Diao, Y., Shenoy, P.: Spire: Efficient data inference and compression over rfid streams. IEEE Transactions on Knowledge and Data Engineering, 141–155 (2012)Google Scholar
  16. 16.
    Diao, Y., Li, B., Liu, A., Peng, L., Sutton, C., Tran, T., Zink, M.: Capturing data uncertainty in high-volume stream processing. In: Proceedings of the 4th Biennial Conference on Innovative Data Systems Research, CIDR 2009 (2009)Google Scholar
  17. 17.
    Welbourne, E., Khoussainova, N., Letchner, J., Li, Y., Balazinska, M., Borriello, G., Suciu, D.: Cascadia: A system for specifying, detecting, and managing rfid events. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services (MobiSys 2008), New York, USA, pp. 281–294 (2008)Google Scholar
  18. 18.
    Wang, F., Liu, P.: Temporal management of rfid data. In: Proceedings of International Conference on Very Large Databases (VLDB 2005), Norway, pp. 1128–1139 (2005)Google Scholar
  19. 19.
    Soliman, M., Ilyas, I., Chen-Chuan Chang, K.: Top-k query processing in uncertain databases. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE 2007), pp. 896–905. IEEE (2007)Google Scholar
  20. 20.
    Zhang, Y., Lin, X., Zhu, G., Zhang, W., Lin, Q.: Efficient rank based knn query processing over uncertain data. In: Proceedings of the 26th International Conference on Data Engineering (ICDE 2010), pp. 28–39. IEEE (2010)Google Scholar
  21. 21.
    Cormode, G., Garofalakis, M.: Sketching probabilistic data streams. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 281–292. ACM (2007)Google Scholar
  22. 22.
    EPCglobal: EPCglobal Specifications,
  23. 23.
    Mo, J., Sheng, Q., Li, X., Zeadally, S.: Rfid infrastructure design: a case study of two australian rfid projects. IEEE Internet Computing 13, 14–21 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiangang Ma
    • 1
  • Quan Z. Sheng
    • 1
  • Damith Ranasinghe
    • 1
  • Jen Min Chuah
    • 1
  • Yanbo Wu
    • 2
  1. 1.School of Computer ScienceThe University of AdelaideAustralia
  2. 2.Beijing Jiaotong UniveresityBeijingChina

Personalised recommendations