Skip to main content

Modeling Sovereign RFID Data Streams in Collaborative Traceable Networks

  • Conference paper
  • 2354 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7651)

Abstract

In the emerging environment of the Internet of Things (IoT), through the connection of billions of radio frequency identification (RFID) tags and sensors to the Internet, applications will generate an unprecedented amount of transactions and data that requires novel approaches in RFID data stream processing and management. Unfortunately, it is difficult to maintain a distributed model without a shared directory or structured index. In this paper, we present a fully distributed model for sovereign RFID data streams. This model combines Tilted Time Frame and Histogram to represent the patterns of object flows. It is efficient in space and can be stored in main memory. The model is built on top of an unstructured P2P overlay. To reduce the overhead of distributed data acquisition, we further propose algorithms that use statistically optimistic number of network calls to maintain the model. The scalability and efficiency of the proposed model are demonstrated through an extensive set of experiments.

Keywords

  • Radio Frequency Identification (RFID)
  • Internet of Things
  • traceable networks
  • RFID data streams
  • scalability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-35063-4_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-35063-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chawathe, S.S., Krishnamurthy, V., Ramachandran, S., Sarma, S.: Managing RFID Data. In: Proc. of the 30th Intl. Conf. on Very Large Data Bases (VLDB 2004), Toronto, Canada (2004)

    Google Scholar 

  2. Gonzalez, H., Han, J., Cheng, H., Li, X., Klabjan, D., Wu, T.: Modeling Massive RFID Data Sets: A Gateway-Based Movement Graph Approach. IEEE T. on Knowl. and Data Eng. 22, 90–104 (2010)

    CrossRef  Google Scholar 

  3. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and Analyzing Massive RFID Data Sets. In: Proc. of the 22nd Intl. Conf. on Data Engineering (ICDE 2006), Atlanta, Georgia, USA (2006)

    Google Scholar 

  4. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2006)

    Google Scholar 

  5. Kailing, K., Cheung, A., Schönauer, S.: Theseos: A Query Engine for Traceability Across Sovereign, Distributed RFID Databases. In: Proc. of the Intl. Conf. on Data Engineering (ICDE 2007), Istanbul, Turkey (2007)

    Google Scholar 

  6. Ng, W.: Developing RFID Database Models for Analysing Moving Tags in Supply Chain Management. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 204–218. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Ripeanu, M.: Peer-to-Peer Architecture Case Study: Gnutella Network. In: Intl. Conf. on Peer-to-Peer Computing (P2P 2001), Los Alamitos, CA, USA (2001)

    Google Scholar 

  8. Sheng, Q.Z., Li, X., Zeadally, S.: Enabling Next-Generation RFID Applications: Solutions and Challenges. IEEE Computer 41(9), 21–28 (2008)

    CrossRef  Google Scholar 

  9. Vitter, J.S.: Random Sampling with a Reservoir. T. on Mathematical Software 11(1), 37–57 (1985)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Wang, F., Liu, S., Liu, P.: A Temporal RFID Data Model for Querying Physical Objects. Pervasive and Mobile Computing 6(3), 382–397 (2010)

    CrossRef  Google Scholar 

  11. Welbourne, E., et al.: Building the Internet of Things Using RFID: The RFID Ecosystem Experience. IEEE Internet Computing 13(3), 48–55 (2009)

    CrossRef  Google Scholar 

  12. Wu, Y., Ranasinghe, D.C., Sheng, Q.Z., Zeadally, S., Yu, J.: RFID Enabled Traceability Networks: A Survey. Distributed and Parallel Databases 29(5-6), 397–443 (2011)

    CrossRef  Google Scholar 

  13. Wu, Y., Sheng, Q.Z., Ranasinghe, D., Yao, L.: PeerTrack: A Platform for Tracking and Tracing Objects in Large-Scale Traceability Networks. In: Proc. of the 15th Intl. Conf. on Database Technology (EDBT 2012), Berlin, Germany (2012)

    Google Scholar 

  14. Wu, Y., Sheng, Q.Z., Ranasinghe, D.C.: Peer-to-Peer Object Tracking in the Internet of Things. In: Proc. of the 40th Intl. Conf. on Parallel Processing (ICPP 2011), Taipei, Taiwan (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Sheng, Q.Z., Zeng, R., Ma, J. (2012). Modeling Sovereign RFID Data Streams in Collaborative Traceable Networks. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds) Web Information Systems Engineering - WISE 2012. WISE 2012. Lecture Notes in Computer Science, vol 7651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35063-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35063-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35062-7

  • Online ISBN: 978-3-642-35063-4

  • eBook Packages: Computer ScienceComputer Science (R0)