Skip to main content

Robustness to Systematic Error for Future Dark Energy Probes

  • Chapter
  • First Online:
  • 699 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Fisher matrix formalism outlined in Sect. 5.3 gives a useful methodology for predicting the error ellipses around the fiducial model on the parameters of interest for future proposed astrophysical probes of cosmology. One of the most common Figures of Merit (FoM) used as a metric for comparing proposed probes is the inverse area of the error ellipse derived from the Fisher matrix formalism [1, 2] which gives a measure of the expected statistical power or ability of a probe to be able to constrain the parameters of interest. Alternative FoMs in higher dimesnions are given by [3]–Mortonson et al. [7], and a more general Bayeisan approach to FoMs is given in [8]. The purpose of the FoM is to evaluate in advance the expected statistical power of future probes. Survey parameters can be adjusted in order to maximise the statistical power of a particular probe, and proposed probes can be ranked by their FoM. This ranking can then assist in the decision making process of how to allocate limited resources to get the best science return.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice that as we average \(R\) along \(b\) we do not re-evaluate the Fisher matrix of the probe as a function of \(b\), but we simply translate the Fisher matrix found at the fiducial point (i.e., the true parameters values). The Fisher matrix typically depends only weakly on the fiducial model chosen, as long as we consider the models within the parameter confidence region. If the bias vector is not much larger than the statistical errors we can therefore approximate the Fisher matrix at the biased parameters values with the one evaluated at the fiducial point.

  2. 2.

    An alternative test would be to check whether the \(N\)th probe is compatible with the previous \(N-1\) (assuming those are already available and they are free of systematics themselves). In this case the relevant quantity is

    $$\begin{aligned} R_{\text{ N}}=\frac{p(d_{N}|d_{N-1}\dots d_{1})}{p(d_{N})p(d_{N-1}\dots d_{1})} \end{aligned}$$
    (8.37)

    which can be computed by appropriate substitutions in Eq. (8.22).

  3. 3.

    For multiple parameters, there is ambiguity to define the worst-case error, since a sign of \(\delta m_{\mathrm{{ sys}}}(z_{\alpha })\) that makes excursion in \(w_{0}\) positive may actually make the \(w_{a}\) excursion negative or vice versa. (Footnote continued) We make a choice that the excursion in \(w_{0}\) is positive in a given redshift bin, which determines the sign of \(\delta m_{\mathrm{{ sys}}}(z_{\alpha })\); then the excursion in \(w_{a}\) in that bin is simply \(c_{\alpha }^{(w_{a})}\,\delta m_{\mathrm{{ sys}}}(z_{\alpha })\).

References

  1. Albrecht, A. et al.: 2006, astro-ph/0609591

    Google Scholar 

  2. Albrecht, A. et al.: 2009, arXiv:0901.0721

    Google Scholar 

  3. Huterer, D. and Turner, M. S.: 2001, PhysRevD D64, 123527

    Google Scholar 

  4. Albrecht, A. J. and Bernstein, G.: 2007, Phys. Rev. D75, 103003

    Google Scholar 

  5. Wang, Y.: 2008, PhysRevD D77, 123525

    Google Scholar 

  6. Crittenden, R. G., Pogosian, L., and Zhao, G.-B.: 2009, JCAP 0912, 025

    Google Scholar 

  7. Mortonson, M. J., Huterer, D., and Hu, W.: 2010, PhysRevD D82, 063004

    Google Scholar 

  8. Trotta, R., Kunz, M., and Liddle, A. R.: 2010, ArXive:1012.319

    Google Scholar 

  9. March, M. C., Trotta, R., Amendola, L., and Huterer, D.: 2011b, MNRAS 415, 143

    Google Scholar 

  10. Hobson, M. P., Bridle, S. L., and Lahav, O.: 2002, MNRAS 335, 377

    Google Scholar 

  11. Feroz, F. et al.: 2008, JHEP 10, 064

    Google Scholar 

  12. Feroz, F., Hobson, M. P., Roszkowski, L., Ruiz de Austri, R., and Trotta, R.: 2009, arXive:0903.2487

    Google Scholar 

  13. Trotta, R.: 2008, Contemp. Phys. 49, 71

    Google Scholar 

  14. Chevallier, M. and Polarski, D.: 2001, International Journal of Modern Physics D 10, 213

    Google Scholar 

  15. Linder, E. V.: 2003, PhysRevLet 90, 091301

    Google Scholar 

  16. Amanullah et al.: 2010, Ap.J. 716, 712

    Google Scholar 

  17. Percival, W. J. et al.: 2010, MNRAS 401, 2148

    Google Scholar 

  18. Komatsu et al.: 2010, arXiv:1001.4538

    Google Scholar 

  19. Riess, A. G., Macri, L., Casertano, S., Sosey, M., Lampeitl, H., Ferguson, H. C., Filippenko, A. V., Jha, S. W., Li, W., Chornock, R., and Sarkar, D.: 2009, ApJ 699(1), 539

    Google Scholar 

  20. Kim, A. G., Linder, E. V., Miquel, R., and Mostek, N.: 2004, MNRAS 347, 909

    Google Scholar 

  21. Linder, E. V. and Huterer, D.: 2003, PhysRevD D67, 081303

    Google Scholar 

  22. Knox, L., Scoccimarro, R., and Dodelson, S.: 1998, PhysRevLet 81, 2004

    Google Scholar 

  23. Huterer, D. and Takada, M.: 2005, APP 23, 369

    Google Scholar 

  24. Laureijs, R. et al.: 2009, arXiv:0912.0914

    Google Scholar 

  25. Seo, H.-J. and Eisenstein, D. J.: 2003, ApJ 598, 720

    Google Scholar 

  26. Seo, H. and Eisenstein, D. J.: 2007, ApJ 665, 14

    Google Scholar 

  27. Amendola, L., Quercellini, C., and Giallongo, E.: 2005, MNRAS 357, 429

    Google Scholar 

  28. Tegmark, M.: 1997, Physical Review Letters 79, 3806

    Google Scholar 

  29. Kaiser, N.: 1987, MNRAS 227, 1

    Google Scholar 

  30. Di Porto, C., Amendola, L., and Branchini, E.: 2011, arXive:1101.2453

    Google Scholar 

  31. Zunckel, C., Okouma, P., Kasanda, S. M., Moodley, K., and Bassett, B. A.: 2011, Phys. Lett. B696, 433

    Google Scholar 

  32. Seo, H., Siegel, E. R., Eisenstein, D. J., and White, M.: 2008, ApJ 686, 13

    Google Scholar 

  33. Taylor, A. N., Kitching, T. D., Bacon, D. J., and Heavens, A. F.: 2007, MNRAS 374, 1377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Cristina March .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

March, M.C. (2013). Robustness to Systematic Error for Future Dark Energy Probes. In: Advanced Statistical Methods for Astrophysical Probes of Cosmology. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35060-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35060-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35059-7

  • Online ISBN: 978-3-642-35060-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics