The Boar Reproductive System

Chapter

Abstract

The boar reproductive system consists of six different structures (testes, epididymis, deferent ducts, urethra, accessory sex glands, and penis) and the main function is the production and the ejaculation of semen. The two testes are the male gonads and their functions are sperm production and secretion of hormones. The main functions of two epididymis are: sperm transport, sperm maturation, and sperm storage. The sperm maturation is a complex process after which sperm acquire progressive motility and fertilizing ability. Male accessory sex glands include: the seminal vesicles, the prostate, and the bulbourethral glands (Cowper’s glands). These exocrine glands release their secretion into the urethra and their secretory activity is androgen-dependent. The noncellular fraction of the ejaculate (seminal plasma) is mainly composed of fluids from the accessory sex glands.

References

  1. Aafjes JH, Vreeburg JT (1972) Distribution of 5α-dihydrotestosterone in the epididymis of bull and boar, and its concentration in rat epididymis afeter ligation of efferent testicular ducts, castration and unilateral gonadectomy. J Endocrinol 53:85–93Google Scholar
  2. Adamali HI, Hermo L (1996) Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J Androl 17:208–222Google Scholar
  3. Amann RP, Seidel GE Jr, Mortimer RG (2000) Fertilizing potential in vitro of semen from young beef bulls containing a high or low percentage of sperm with a proximal droplet. Theriogenology 54:1499–515Google Scholar
  4. Au CL, Wong PYD (1980) Luminal acidification by the perfused rat cauda Epididymis. J Physiol 309:419–427Google Scholar
  5. Aumüller G, Riva A (1992) Morphology and functions of the human seminal vesicle. Andrologia 24:183–196Google Scholar
  6. Badia E (2003) Estudi Estructural, Ultraestructural I Histoquímic de les Glàndules Sexuals Accessòries del Mascle Reproductor Porcí. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  7. Badia E, Pinart E, Briz M, Pastor LM, Sancho S, García-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Yeste M, Casas I, Bonet S (2005a) Lectin histochemistry of the boar prostate. Reprod Domest Anim 40(4):355Google Scholar
  8. Badia E, Pinart E, Briz M, Pastor LM, Sancho S, Garcia-Gil N, Bassols J, Kádár E, Pruneda A, Bussalleu E, Yeste M, Bonet S (2005b) Lectin histochemistry of the boar bulbourethral glands. Eur J Histochem 49:131–138PubMedGoogle Scholar
  9. Badia E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Casas I, Bonet S (2006a) Structural and ultrastructural features of boar bulbourethral glands. Tissue Cell 38:7–18PubMedCrossRefGoogle Scholar
  10. Badia E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Casas I, Bonet S (2006b) Structural and ultrastructural features of boar seminal vesicles. Tissue Cell 38(2):79–91PubMedCrossRefGoogle Scholar
  11. Bassols J (2006) Cultiu de les Cèl.lules Epitelials Epididimàries de Sus domesticus: Anàlisi Estructural, Funcional i Proteòmic. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  12. Bassols J, Kádár E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Pruneda A, Bussalleu E, Yeste M, Bonet S (2004) In vitro culture of epithelial cells from caput, corpus and cauda epididymis of sus domesticus. Theriogenology 62:929–942PubMedCrossRefGoogle Scholar
  13. Bassols J, Kádár E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Pruneda A, Bussalleu E, Yeste M, Casas I, Dacheux JL, Bonet S (2005a) Evaluation of boar sperm maturation after co-incubation with caput, corpus and cauda epididymal cultures. Theriogenology 64:1995–2009PubMedCrossRefGoogle Scholar
  14. Bassols J, Bonet S, Dacheux F, Dacheux JL (2005b) Secretory activity of boar caput epididymal epithelial cells in culture. Reprod Domest Anim 40(4):357Google Scholar
  15. Bassols J, Kádar E, Briz M, Pinart E, Sancho S, García-Gil N, Badia E, Pruneda A, Bussalleu E, Yeste M, Casas I, Bonet S (2006a) Migration of the cytoplasmic droplet in epididymal cultures of sus scrofa. Reprod Domest Anim 41(4):322Google Scholar
  16. Bassols J, Kádár E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Pruneda A, Bussalleu E, Yeste M, Casas I, Bonet S (2006b) Effect of culture conditions on the obtention of boar epididymal epithelial cell monolayers. Anim Reprod Sci 95(3–4):262–272PubMedCrossRefGoogle Scholar
  17. Bedford JM (1975) Maturation, transport and fate of spermatozoa in the epididymis. In: Hamilton DW, Greep RO (eds) Handbook of physiology, American Physiological Society, Washington, pp. 303–317Google Scholar
  18. Bloom G, Nicander L (1961) On the ultrastructure and development of the protoplasmic droplet of spermatozoa. Z Zellforsc. Mikrosk Anat 55:833–844Google Scholar
  19. Bonet S, Briz M (1991a) Comparison between the conventional method and the simple desiccation method in porcine sperm processing for scanning electron microscopy. J Microsc 162:291–294PubMedCrossRefGoogle Scholar
  20. Bonet S, Briz M (1991b) New data on aberrant spermatozoa in the ejaculate of sus domesticus. Theriogenology 35:725–730PubMedCrossRefGoogle Scholar
  21. Bonet S, Briz M (1991c) Qualitative changes in the aberrant gametic forms of epididymal sperm. Hum Reprod 6(1):60Google Scholar
  22. Bonet S, Briz M (1991d) Quality of epididymal sperm by optic microscopy. Hum Reprod 6(1):61–62Google Scholar
  23. Bonet S, Briz M (1991e) The osmotic resistance of acrosomal membranes and viability of the epididymal sperm. Human Reprod Embryol 6(1):61Google Scholar
  24. Bonet S, Briz M, Pinart E, Camps R, Fradera A, Casadevall M (1995a) Light microscopy characterization of sperm morphology. Microsc Anal 9:29–31Google Scholar
  25. Bonet S, Briz M, Yeste M (2012) A proper assessment of boar sperm function may not only require conventional analyses but also others focused on molecular markers of epididymal maturation. Reprod Domest Anim 47(3):52–64PubMedCrossRefGoogle Scholar
  26. Boursnell JC, Hartree EF, Briggs PA (1970) Studies of the bulbo-urethral (Cowper's)-gland mucin and seminal gel of the boar. Biochem J 117:981–988Google Scholar
  27. Boursnell JC, Butler EJ (1973) Studies on properties of the seminal gel of the boar using natural gel and gel formed in vitro. J Reprod Fertil 34:457–465Google Scholar
  28. Briz M (1994) Anàlisi Microscòpica de l’Esperma Ejaculada I de la Maduració Epididimària dels Espermatozoides de Sus domesticus. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  29. Briz M, Bonet S, Fradera A (1993) A morphologic study of the ductus of the epididymis of sus domesticus. J Morphol 215:183–193CrossRefGoogle Scholar
  30. Briz M, Bonet S, Pinart E, Camps R (1996) Sperm malformations throughout the boar epididymal duct. Anim Reprod Sci 43:221–239CrossRefGoogle Scholar
  31. Brooks DE, Hamilton DW, Mallek AH (1974) Carnitine and glycerylphosphorylcholine in the reproductive tract of the male rats. J Reprod Fertil 36(1):141–160Google Scholar
  32. Brown D, Liu B, Gluck S, Sabolic I (1992) A plasma membrane proton ATPase in specialized cells of rat epididymis. Am J Physiol 263:C913–916Google Scholar
  33. Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Casas I, Fàbrega A, Puigmulé M, García E, Santos M, Bonet S (2008) Correlation between sperm motility, mitocondrial sheath integrity and L-lactate production in asthenospermic boars. Reprod Domest Anim 43(5):54Google Scholar
  34. Calvete JJ, Valera PF, Sanz L, Töpfer-Petersen E (1996) Boar spermadhesins AQN-1 and AQN-3: oligosaccharide and zona pellucida binding characteristics. Biol Chem 377:521–527Google Scholar
  35. Calvin HI, Bedford JM (1971) Formation of disulphide bonds in the nucleus and accessory structures of mammalian sperm spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl 13:65–75Google Scholar
  36. Casillas ER (1973) Accumulation of carnitine by bovine spermatozoa during maturation in the epididymis. J Biol Chem 248:8227–8232Google Scholar
  37. Cheung YM, Hwang JC, Wong PY (1977) In vitro measurement of rate of fluid secretion in rat isolated seminiferous tubules: effects of metabolic inhibitors and ions. J Physiol 269(1):1–15Google Scholar
  38. Cooper TG (1998) Epididymis. In: Neill JD, Knobil E (eds) Encyclopedia of Reproduction, Academis Press, San DiegoGoogle Scholar
  39. Cosentino MJ, Cockett AT (1986) Structure and function of the epididymis. Urol Res 14: 229–240Google Scholar
  40. Calvo A, Pastor LM, Bonet S, Pinart E, Ventura M (2000) Characterization of the glycoconjugates of boar testis and epididymis. J Reprod Fertil 120:325–335PubMedCrossRefGoogle Scholar
  41. Dacheux JL, Paquignon M (1980) Relations between the fertilizing ability, motility and metabolism of epididymal spermatozoa. Reprod Nutr Dev 20:1085–1099Google Scholar
  42. Dacheux JL, Chevrier C, Dacheux F, Jeulin C, Gatti JL, Pariset C, Paquignon M (1990) Sperm biochemical changes during epididymal maturation. In: Alexander NJ (ed) Gamete Interaction: Prospects for Immunocontraception, Wiley-Liss, Inc., New YorkGoogle Scholar
  43. Dacheux JL, Druart X, Fouchecourt S, Syntin P, Gatti JL, Okamura N, Dacheux F (1998) Role of epididymal secretory proteins in sperm maturation with particular reference to the boar. J Reprod Fertil Suppl 53:99–107Google Scholar
  44. Dacheux JL, Belleannée C, Jones R, Labas V, Belghazi M, Guyonnet B, Druart X, Gatti JL, Dacheux F (2009) Mammalian epididymal proteome. Mol Cell Endocr 306:45–50CrossRefGoogle Scholar
  45. Devine PL, McKenzie IF (1992) Mucins: structure, function, and associations with malignancy. Bioessays 14:619–625Google Scholar
  46. Dostalova Z, Calvete JJ, Sanz L, Töpfer- Petersen E (1994) Quantitation of boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa. Biochim Biophys Acta 25:48–54Google Scholar
  47. Dubiel A, Stanczyk JF, Krolinski J, Michalewska M (1980) Concentration of ions of selected trace elements in the ejaculates of boar after interruption of the flow of the secretion from the testes, epididymis and accessory sexual glands. Pol Arch Weter 21:485–492Google Scholar
  48. Dyce KM, Sack WO, Wensing CJG (1999) Anatomía Veterinaria, México (McGraw-Hill Interamericana Eds)Google Scholar
  49. Ekhlasi-Hundrieser M, Sinowatz F, Greiser De Wilke I, Waberski D, Töpfer-Petersen E (2002) Expression of spermadhesin genes in porcine male and female reproductive tracts. Mol Reprod Dev 61:32–41Google Scholar
  50. Ekstedt E, Ridderstrale Y, Ploen L, Rodriguez-Martinez H (1991) Histochemical localization of carbonic anhydrase in the testis and epididymis of the boar. Acta Anat (Basel) 141:257–261Google Scholar
  51. Fàbrega A, Guyonnet B, Dacheux JL, Gatti JL, Puigmulé M, Bonet S, Pinart E (2011a) Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrinol 9:96–109PubMedCrossRefGoogle Scholar
  52. Fàbrega A, Puigmulé M, Yeste M, Casas I, Briz M, Bonet S, Pinart E (2011b) Impact of epididymal maturation, ejaculation and in vitro capacitation on the tyrosine phosphorylation patterns exhibited of boar (Sus domesticus) spermatozoa. Theriogenology 76(7):1356–1366PubMedCrossRefGoogle Scholar
  53. Fàbrega A, Puigmulé M, Dacheux JL, Bonet S, Pinart E (2012a) Glycocalix characterization and glycoproteic expression of Sus domesticus epididymal sperm surface samples. Reprod Fertil Dev 24:619–630 (http://dx.doi.org/10.1071/RD11064)PubMedCrossRefGoogle Scholar
  54. Fàbrega A, Puigmulé M, Bonet S, Pinart E (2012b) Epididymal maturation and ejaculation are key events for further in vitro capacitation of boar spermatozoa. Theriogenology 78:867–877 (http://dx.doi.org/10.1016/j.theriogenology.2012.03.039)PubMedCrossRefGoogle Scholar
  55. French FS, Ritzen EM (1973) A high-affinity androgen-binding protein (ABP) in rat testis: evidence for secretion into efferent duct fluid and absorption by epididymis. Endocrinology 93:88–95Google Scholar
  56. Garcia-Gil N (2002) Estructura I Ultraestructura Testicular del Mascle Reproductor Porcí. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  57. García EM, Vázquez JM, Calvete JJ, Sanz L, Caballero I, Parrilla I, Gil MA, Roca J, Martinez EA (2006) Dissecting the protective effect of the seminal plasma spermadhesin PSP-I/PSP-II on boar sperm functionality. J Androl 27:434–443Google Scholar
  58. García EM, Vázquez JM, Parrilla I, Ortega MD, Calvete JJ, Sanz L, Martínez EA, Roca J, Rodríguez-Martínez H (2008) Localization and expression of spermadhesin PSPI/PSP-II subunits in the reproductive organs of the boar. Int J Androl 31:408–417Google Scholar
  59. Garcia-Gil N, Pinart E, Sancho S, Badia E, Bassols J, Kádár E, Briz M, Bonet S (2002a) Markers of testicular function in healthy landrace boars. Hum Reprod 17:99Google Scholar
  60. Garcia-Gil N, Pinart E, Sancho S, Badia E, Bassols J, Kádár E, Briz M, Bonet S (2002b) The cycle of the seminiferous epithelium in landrace boars. Anim Reprod Sci 73:211–225PubMedCrossRefGoogle Scholar
  61. Gatti JL, Chevrier C, Paquignon M, Dacheux JL (1993) External ionic conditions, internal pH and motility of ram and boar spermatozoa. J Reprod Fertil 98:439–449Google Scholar
  62. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ (1996) Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of cytoplasmic space, oxidative stress, and sperm function. J Androl 17:276–287Google Scholar
  63. Goyal HO, Williams CS (1991) Regional differences in the morphology of the goat epididymis: a light microscopic and ultrastructural study. Am J Anat 190:349–369Google Scholar
  64. Hafez B, Hafez E (2000) Reproduction in farm animals. Wiley, USA (Lippincott Williams & Wilkins Eds)Google Scholar
  65. Hamilton DW (1975) Structure and function of the epithelium lining the ductuli efferentes, ductus epididymis, and ductus deferens in the rat. In: Hamilton DW, Greep RO (eds) Handbook of Physiology, vol. 5, Williams and Wilkins, BerlinGoogle Scholar
  66. Harayama H, Miyano T, Miyake M, Kusunoki H, Kato S (1994) Identification of antiagglutinin for spermatozoa in epididymal boar plasma. Mol Reprod Dev 37(4):436–445Google Scholar
  67. Harayama H, Magargee SF, Kunze E, Shidara O, Iwamoto E, Arikawa S, Miyake M, Kato S, Hammerstedt RH (1999) Changes in epididymal protein anti-agglutinin on ejaculated boar spermatozoa during capacitation in vitro. Reprod Fertil Dev 11:93–99Google Scholar
  68. Harayama H, Liao PC, Gage DA, Miyake M, Kato S, Hammerstedt RH (2000) Biochemical characterization of sialoprotein "anti-agglutinin" purified from boar epididymal and seminal plasma. Mol Reprod Dev 55:96–103Google Scholar
  69. Hermo L, Adamali HI, Andonian S (2000) Immunolocalization of CA II and H+ VATPase in epithelial cells of the mouse and rat epididymis. J Androl 21:376–391Google Scholar
  70. Hinton BT, Snoswell AM, Setchell BP (1979) The concentration of carnitine in the luminal fluid of the testis and epididymis of the rat and some other mammals. J Reprod Fertil 56(1):105–111Google Scholar
  71. Hinton BT, Brooks DE, Dott HM, Setchell BP (1981) Effects of carnitine and some related compounds on the motility of rat spermatozoa from the caput epididymis. J Reprod Fertil 61:59–64Google Scholar
  72. Hinton BT, Howards SS (1982) Rat testis and epididymis can transport [3H] 3-Omethyl-D-glucose, [3H] inositol and [3H] alpha-aminoisobutyric acid across it epithelia in vivo. Biol Reprod 27(5):1181–1189Google Scholar
  73. Hinton BT, Palladino MA (1995) Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment. Microsc Res Tech 30(1):67–81Google Scholar
  74. Hart A, Phillip M (2007) The leydig cell in health and disease. Humana Press Inc, USAGoogle Scholar
  75. Holtz W, Smidt D (1976) The fertilizing cpacity of epididymal spermatozoa in the pig. J Reprod Fertil 46:227–229Google Scholar
  76. Hoskins DD, Vijayaraghavan S (1990) A new theory on the acquisition of sperm motility during epididymal transit. In: Gagnon C (ed) Control of Sperm Motility: Biological and Clinical Aspects, CRC Press, Boca, RatonGoogle Scholar
  77. Hughes PE, Varley MA (1984) Reproducción del Cerdo. Acribia, ZaragozaGoogle Scholar
  78. James MJ, Brooks DE, Snoswell AM (1981) Kinetics of carnitine uptake by rat epididymal cells. Androgen-dependence and lack of stereospecificity. FEBS Lett 126:53–56Google Scholar
  79. Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15:291–294Google Scholar
  80. Jeulin C, Dacheux JL, Soufir JC (1994) Uptake and release of free L-carnitine by boar epididymal spermatozoa in vitro and subsequent acetylation rate. J Reprod Fertil 100:263–271Google Scholar
  81. Jeulin C, Lewin LM (1996) Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update 2:87–102Google Scholar
  82. Jones AR, Montague MD (1991) Metabolism of fructose-1,6-bisphosphate by mature boar spermatozoa. Reprod Fertil Dev 3:609–613Google Scholar
  83. Jones R (1989) Membrane remodeling during sperm maturation in the epididymis. In: Milligan SR (ed) Oxford reviews of reproductive biology. Oxford University Press, OxfordGoogle Scholar
  84. Jones RC, Clulow J (1994) Interactions of sperm and the reproductive ducts of the male tammar wallaby, Macropus eugenii (Macropodidae: Marsupialia). Reprod Fertil Dev 6:437–444Google Scholar
  85. Jones R (1998) Plasma membrane structure and remodeling during sperm maturation in the epididymis. J Reprod Fertil Suppl 53:73–84Google Scholar
  86. Jones AR, Bubb WA (2000) Substrates for endogenous metabolism by mature boar spermatozoa. J Reprod Fertil 119:129–135Google Scholar
  87. Keating J, Grundy CE, Fivey PS, Elliott M, Robinson J (1997) Investigation association between the presence of cytoplasmic residues on the human sperm midpiece and defective sperm function. J Reprod Fertil 110:71–77Google Scholar
  88. Kinoshita JH, Nishimura C (1988) The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev 4:323–337Google Scholar
  89. Kordan W, Holody D, Eriksson B, Fraser L, Rodriguez-Marin H, Strzezek, L (1998) Sperm motility inhibiting factor (SMIF)-a plasmatic peptide with multifunctional biochemical effects on boar spermatozoa. Reprod Dom Anim 33:347–354Google Scholar
  90. Lagow E, DeSouza MM, Carson DD (1999) Mammalian reproductive tract mucins. Hum Reprod Update 5:280–292Google Scholar
  91. Lamblin G, Roussel P (1993) Airway mucins and their role in defence against microorganisms. Respir Med 87:421–426Google Scholar
  92. Lavon U, Boursnell JC (1971) Characterization of boar seminal plasma, vesicular secretion and epididymal plasma proteins by gel disc electrophoresis and isoelectric focusing on polyacrylamide. J Reprod Fertil 27:227–232Google Scholar
  93. Luke MC, Coffey DS (1994) Human androgen receptor binding to the androgen response element of prostate specific antigen. J Androl 15:41–51Google Scholar
  94. Manaskova P, Rylava H, Ticha M, Jonakova V (2002) Characterization of proteins fromboar prostate. Am J Reprod Immunol 48:283–290Google Scholar
  95. Manaskova P, Jonakova V (2008) Localization of porcine seminal plasma (PSP) proteins in the boar reproductive tract and spermatozoa. J Reprod Immunol 78:40-48Google Scholar
  96. Moore HD (1990) Development of sperm-egg recognition processes in mammals. J Reprod Fertil Suppl 42:71–78Google Scholar
  97. Nonogaki T, Noda Y, Narimoto K, Shiotani M, Mori T, Matsuda T, Yoshida O (1992) Localization of CuZn-superoxide dismutase in the human male genital organs. Hum Reprod 7:81–85Google Scholar
  98. Knobil E, Neill J (2006) Phisiology of Reproduction, 3rd edn. Academic, WalthamGoogle Scholar
  99. Pinart E (1997) Efectes de la Criptorquídia Espontània Abdominal sobre la Qualitat Espermàtica i l’Estructura Testicular dels Mascles Porcins Postpuberals. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  100. Pinart E, Sancho S, Briz M, Bonet S (1998) Germ cells and meiosis in unilateral and bilateral abdominal cryptorchid boars. Adv Reprod 2:35–44Google Scholar
  101. Pinart E, Sancho S, Briz M, Bonet S (1999a) Morphologic study of the testes from spontaneous unilateral and bilateral abdominal cryptorchid boars. J Morphol 239:225–243PubMedCrossRefGoogle Scholar
  102. Pinart E, Sancho S, Briz M, Bonet S, Badia E (1999b) Efficiency of the process of meiosis in scrotal testes of healthy boars and unilateral abdominal cryptorchid boars. Teratology 60:209–214PubMedCrossRefGoogle Scholar
  103. Pinart E, Sancho S, Briz M, Bonet S, Garcia N, Badia E (2000) Ultrastructural study of the boar seminiferous epithelium: changes in cryptorchidism. J Morphol 244:190–202PubMedCrossRefGoogle Scholar
  104. Pinart E, Bonet S, Briz M, Pastor LM, Sancho S, Garcia N, Badia E, Bassols J (2001a) Morphological and histochemical characteristics of the lamina propia in scrotal and abdominal testes from postpubertal boars: correlation with the appearance of the seminiferous eptithelium. J Anat 199:435–448PubMedCrossRefGoogle Scholar
  105. Pinart E, Bonet S, Briz M, Pastor LM, Sancho S, Garcia N, Badia E, Bassols J (2001b) Lectin affinity of the seminiferous epithelium in healthy and cryptorchid sus domesticus males. International J Androl 24:153–164CrossRefGoogle Scholar
  106. Pinart E, Bonet S, Briz M, Sancho S, Garcia N, Badia E (2001c) Cytology of the interstitial tissue in scrotal and abdominal testes of post-puberal boars. Tissue Cell 33(1):8–24PubMedCrossRefGoogle Scholar
  107. Pinart E, Bonet S, Briz M, Pastor LM, Sancho S, Garcia N, Badia E, Bassols J (2002) Histochemical study of the interstitial tissue in scrotal and abdominal boar testes. Vet J 163:63–76CrossRefGoogle Scholar
  108. Pinart E, Bonet S, Briz M, Pastor LM, Sancho S, Garcia-Gil N, Badia E, Bassols J (2001e) Blood capillaries in scrotal and abdominal boar testes: morphology and lectin histochemistry. Hum Reprod 16:103–104CrossRefGoogle Scholar
  109. Pruneda A (2006) Estudi Citològic i Bioquímic del Fluid Epididimari de Sus domesticus.. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  110. Pruneda A, Pinart E, Briz M, Sancho S, Garcia-Gil N, Badia E, Kádár E, Bassols J, Bussalleu E, Yeste M, Bonet S (2005a) Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 63:2219–2232PubMedCrossRefGoogle Scholar
  111. Pruneda A, Yeung CH, Bonet S, Pinart E, Cooper TG (2005b) Concentration of glutamate and myo-inositol in epididymal fluid and spermatozoa from boars. Reprod Domest Anim 40(4):369Google Scholar
  112. Pruneda A, Pinart E, Bonet S, Yeung CH, Cooper T (2006a) Study of the polyol pathway in the porcine epididymis. Mol Reprod Dev 73:859–865PubMedCrossRefGoogle Scholar
  113. Pruneda A, Pinart E, Bonet S, Yeung CH, Cooper TG (2006b) Concentration of glucose, sorbitol and fructose in the epididymal fluid of boars. Reprod Domest Anim 41(4):322–323Google Scholar
  114. Pruneda A, Yeung CH, Bonet S, Pinart E, Cooper TG (2007) Concentrations of carnitine, glutamate, myo-inositol and sorbitol in epididymal fluid and spermatozoa from boars: comparison of two different semen collection frequencies. Anim Reprod Sci 97:344–355PubMedCrossRefGoogle Scholar
  115. Puigmulé M, Fàbrega A, Yeste M, Briz M, Bonet S, Pinart E (2011) Study of the proacrosin/acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatoza. Reprod Fertil Dev 23:837–845PubMedCrossRefGoogle Scholar
  116. Robaire B, Hermo L (1988) Efferent ducts, epididymis and vas deferens: structure, function and their regulation. In: Knobil E, Neill JD (eds) The Physiology of Reproduction, Raven Press, New YorkGoogle Scholar
  117. Rodriguez-Martinez H, Ekstedt E, Einarsson S (1990) Acidification of epididymal fluid in the boar. Int J Androl 13:238–243Google Scholar
  118. Saiz-Cidoncha F, de Alba C, Sagües A, Pérez-Marcos C (1991) Composición bioquímica del plasma seminal porcino y metabolismo espermático. Anaporc 104:14–26Google Scholar
  119. Sancho S (2002) Efectes del Fotoperiode sobre la Qualitat Espermàtica de Mascles Porcins Sus domesticus. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  120. Seiler P, Cooper TG, Yeung CH, Nieschlag E (1999) Regional variation in macrophage antigen expresión by murine epididymal basal cells and their regulation by testicular factors. J Androl 20:738–746Google Scholar
  121. Setchell BP (1967) Fluid secretion by the testis. J Reprod Fertil 14:347–348Google Scholar
  122. Setchell BP (1969) Do Sertoli cells secrete fluid into the seminiferous tubules? J Reprod Fertil 19(2):391–392Google Scholar
  123. Setchell BP, Maddocks S, Brook DE (1994) Anatomy, vasculature, innervation and fluids of the male reproductive tract. In: Knobil E, Neill JD (eds) The Physiology of Reproduction, 2nd edn, Raven Press, New YorkGoogle Scholar
  124. Shivaji S, Scheit KH, Bhargava PM (1990) Proteins of Seminal Plasma. John Wiley & Sons Inc., New YorkGoogle Scholar
  125. Smital J (2009) Effects influencing boar semen. Anim Reprod Sci 110:335–346PubMedCrossRefGoogle Scholar
  126. Stoffel MH, Friess AE (1994) Morphological characteristics of boar efferent ductules and epididymal duct. Microsc Res Tech 29(6):411–431Google Scholar
  127. Strous GL, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92Google Scholar
  128. Strzezek J, Kordan W, Glogowski J, Wysocki P, Borkowski K (1995) Influence of semen-collection frequency on sperm quality in boars, with special reference to biochemical markers. Reprod Dom Anim 30:85–94Google Scholar
  129. Strzezek J, Lapkiewicz S, Lecewicz M (1999). A note on antioxidante capacity of boar seminal plasma. Anim Sci Pap Rep 17(4):181–188Google Scholar
  130. Strzezek J, Martín-Rillo S, Sáiz-Cidoncha F (2000) Glándula vesicular seminal del verraco: su papel en la capacidad de fertilización. Anaporc 205:59–84Google Scholar
  131. Sun EL, Flickinger CJ (1980) Morphological characteristics of cells with apical nuclei in the initial segment of the adult rat epididymis. Anat Rec 196:285–293Google Scholar
  132. Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL (1996) Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol Reprod 55:956–974Google Scholar
  133. Syntin P, Dacheux JL, Dacheux F (1999) Postnatal development and regulation of proteins secreted in the boar epididymis. Biol Reprod 61:1622–1635Google Scholar
  134. Tash JS, Means AR (1983) Cyclic adenosine 3’,5’ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 28:75–104Google Scholar
  135. Thundathil J, Palasz AT, Barth AD, Mapletoft RJ (2001) The use of in vitro fertilization techniques to investigate the fertilizing ability of bovine sperm with proximal cytoplasmic droplets. Anim Reprod Sci 65:181–192Google Scholar
  136. Töpfer-Petersen E, Calvete JJ (1995) Molecular mechanisms of the interaction between sperm and the zona pellucida in mammals: studies on the pig. Int J Androl Suppl 2:20–26Google Scholar
  137. Töpfer-Petersen E, Calvete JJ, Sanz L, Sinowatz F (1995) Carbohydrate and heparin binding proteins in mammalian fertilization. Andrologia 27:303–324Google Scholar
  138. Tuck RR, Setchell BP, Waites GM, Young JA (1970) The composition of fluid collected by micropuncture and catheterization from the seminiferous tubules and rete testis of rats. Pflugers Arch 318:225–243Google Scholar
  139. Turner TT, Howards SS (1985) The tenacity of the blood-testis and blood-epididymal barriers. In: Lobl TJ, Hafez ESE (eds) Male Fertility and its Regulation, MTP Press Ltd, LancasterGoogle Scholar
  140. Veri JP, Hermo L, Robaire B (1993) Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts, and epididymis of the male rat. J Androl 14:23–44Google Scholar
  141. Weddington SD, Brandzaeg P, Hansson V, French FS, Petrusz P, Ritzen EM (1975) Immunological cross reactivity between testicular androgen-binding protein and serum testosterone-binding globulin. Nature 258:257–259Google Scholar
  142. Wong PYD, Au CL, Ngai HK (1979) Some characteristics of salt and water transport in the rat epididymis. In: Fawcett DW, Bedford JM (eds) The Spermatozoon, Urban & Schwarzenberg, Baltimore-MunichGoogle Scholar
  143. Wong PYD (1986) Fluid transport and sperm maturation in the epididymis. Biomed Res 7 (Suppl 2):233Google Scholar
  144. Wysocki P, Strzezek J (2000) Molecular forms of acid phosphatise of boar seminalplasma. Animal Science Papers and Reports 18:99–106Google Scholar
  145. Wysocki P, Strzezek J (2003) Purification and characterization of a protein tyrosine acidphosphatase from boar seminal vesicle glands. Theriogenology 59:1011–1025Google Scholar
  146. Yeung CH, Cooper TG, Oberpenning F, Schulze H, Nieschlag E (1993) Changes inmovement characteristics of human spermatozoa along the lenght of the epididymis. Biol Reprod 49:274–280Google Scholar
  147. Yeung CH, Nashan D, Sorg C, Oberpenning F, Schulze H, Nieschlag E, Cooper TG (1994) Basal cells of the human epididymis-antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 50:917–926Google Scholar
  148. Yeste M (2008) New insights into boar sperm function and survival from integrated field and laboratory studies. Doctoral Thesis. Ed Universitat de GironaGoogle Scholar
  149. Yeste M, Sancho S, Briz M, Pinart E, Bussalleu E, Bonet S (2010) A diet supplemented with L-carnitine improves the sperm quality of pietrain but not duroc and large white boars when photoperiod and temperature increase. Theriogenology 73:577–586PubMedCrossRefGoogle Scholar
  150. Yeste M, Castillo-Martín M, Bonet S, Briz MD (2012) Direct binding of boar ejaculate and epididymal spermatozoa to porcine epididymal epithelial cells is also needed to maintain sperm survival in in vitro co-culture. Anim Reprod Sci, 131:181–193. dx.doi.org/10.1016/j.anireprosci.2012.03.005

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain

Personalised recommendations