Skip to main content

The Boar Spermatozoon

  • Chapter
  • First Online:

Abstract

The microscopic appearance of the boar spermatozoon allows us to appreciate both its inner and outer structural complexity. Both light and electron microscopy may be used to study the structure and ultrastructure of this highly specialized cell and the way it probably works to achieve successful fertilization. Compartmentalization of the spermatozoon is a critically important feature of its structure as it enables this cell to perform the variety of tasks needed to fulfill its role. Different sperm malformations usually affect some cellular components essential for the correct development of the spermatozoon–oocyte interaction in the fertility process. Careful assessment of sperm morphology may sometimes indicate the possible cause of sperm quality and fertility decrease. Moreover, regional specialization of the plasma membrane, related to lipid/protein composition and distribution, allows the underlying cellular molecules to interact independently with their external environment, thereby enabling the efficient performance of the various tasks necessary for successful fertilization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ardón F, Helms D, Sahin, E, Bollwein H, Töpfer Petersen E, Waberski D (2008) Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo. Reproduction 135:461–470

    Google Scholar 

  • Arya M, Vanha-Perttula T (1985) Lectin-binding pattern of bull testis and epididymis. J Androl 6:230–242

    PubMed  CAS  Google Scholar 

  • Austin CR (1995) Evolution of human gametes: spermatozoa. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Bains HK, Sehgal S, Bawa SR (1992) Human sperm surface mapping with lectins. Acta Anat 145:207–211

    PubMed  CAS  Google Scholar 

  • Belleannée C, Belghazi M, Labas V, Teixeira-Gomes A-P, Gatti JL, Dacheux J-L, Dacheux F (2011) Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 11:1952–1964

    PubMed  Google Scholar 

  • Blobel CP (2000) Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev Reprod 5:75–83

    PubMed  CAS  Google Scholar 

  • Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68:147–155

    Google Scholar 

  • Bonet S (1987) Study of ejaculation of a pig submitted to a high rhythm of services in artificial insemination. Scient Gerund 13:35–40

    Google Scholar 

  • Bonet S (1990) Immature and aberrant spermatozoa in the ejaculate of sus domesticus. Anim Reprod Sci 22:67–80

    Google Scholar 

  • Bonet S, Briz M (1991a) Comparison between the conventional method and the simple desiccation method in porcine sperm processing for scanning electron microscopy. J Microsc-Oxford 162:291–294

    CAS  Google Scholar 

  • Bonet S, Briz M (1991b) New data on aberrant spermatozoa in the ejaculate of sus domesticus. Theriogenology 35:725–730

    PubMed  CAS  Google Scholar 

  • Bonet S, Briz M, Fradera A, Egozcue J (1992) Origin, development and ultrastructure of boar spermatozoa with folded tails and with two tails. Hum Reprod 7:523–528

    PubMed  CAS  Google Scholar 

  • Bonet S, Briz M, Fradera A (1993) Ultrastructural abnormalities of boar spermatozoa. Theriogenology 40:383–396

    PubMed  CAS  Google Scholar 

  • Bonet S, Briz M, Fradera A (1994a) Contrastación del esperma de porcino al microscopio electrónico de barrido. In: Tratado de ganado porcino: técnicas de contrastación seminal, vol 21. Editorial Luzán 5, Madrid, pp 21–28

    Google Scholar 

  • Bonet S, Briz M, Fradera A (1994b) Contrastación del esperma de porcino al microscopio electrónico de transmisión. In: Tratado de ganado porcino: Técnicas de contrastación seminal, vol 21. Editorial Luzán 5, Madrid, pp 31–44

    Google Scholar 

  • Bonet S, Briz M, Pinart E, Camps R, Fradera A, Casadevall M (1995) Light microscopy characterization of sperm morphology. Microsc Anal 9:29–31

    Google Scholar 

  • Bonet S, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E (2000) Morphology of boar spermatozoa. Institut d’Estudis Catalans, Barcelona

    Google Scholar 

  • Bonet S, Briz M, Pinart E, Sancho S, García-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Yeste M, Casas I, Carreras A (2006) Análisis de la morfología espermática al microscopio electrónico de barrido y al microscopio electrónico de transmisión. In: Bonet S, Martínez E, Rodríguez-Gil JE, Barrera X (eds) Biotecnología de la reproducción porcina: manual de técnicas de reproducción asistida en porcino. Servicio Publicaciones UdG—Red Temática Nacional Reproducción Porcina, Girona, pp 39–50

    Google Scholar 

  • Brewis IA, Gadella BM (2010) Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod 16:68–79

    PubMed  CAS  Google Scholar 

  • Briz M, Fradera A, Bonet S, Pinart E (1993) Analysis of the seminal characteristics of a boar with impaired fertility. Scient Gerund 19:53–60

    Google Scholar 

  • Briz M (1994) Microscopical analysis of the ejaculated sperm and the sperm epididymal maturation of sus domesticus. Doctoral Thesis, pp 308. Available via http://www.tdx.cat/handle/10803/7632

  • Briz M, Bonet S, Pinart E, Egozcue J, Camps R (1995) Comparative study of boar sperm coming from the caput, corpus and cauda regions of the epididymis. J Androl 16:175–188

    PubMed  CAS  Google Scholar 

  • Briz M, Bonet S, Pinart E, Camps R (1996) Sperm malformations throughout the boar epididymal duct. Anim Reprod Sci 43:221–239

    Google Scholar 

  • Brown CR, von Glos KI, Jones R (1983) Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol 96:256–264

    PubMed  CAS  Google Scholar 

  • Bucci D, Isani G, Spinaci M, Tamanini C, Mari G, Zambelli D, Galeati G (2010) Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 45:315–322

    PubMed  CAS  Google Scholar 

  • Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C (2011) GLUTs and mammalian sperm metabolism. J Androl 32:348–355

    PubMed  CAS  Google Scholar 

  • Calvo A, Pastor LM, Bonet S, Pinart E, Ventura M (2000) Characterization of the glycoconjugates of boar testis and epididymis. J Reprod Fertil 120:325–335

    PubMed  CAS  Google Scholar 

  • Calvo A, Pastor LM, Horn R, Pallares J (1995) Histochemical study of glycoconjugates in the epididymis of the hamster (Mesocricetus auratus). Histochem J 27:670–680

    PubMed  CAS  Google Scholar 

  • Carmona E, Weerachatyanukul W, Soboloff T, Fluharty AL, White D, Promdee L, Ekker M, Berger T, Buhr M, Tanphaichitr N (2002) Arylsulfatase a is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Dev Biol 247:182–196

    PubMed  CAS  Google Scholar 

  • Casas I, Sancho S, Ballester J, Briz M, Pinart E, Bussalleu E, Yeste M, Fàbrega A, Rodríguez-Gil JE, Bonet S (2010) The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 74:940–950

    PubMed  CAS  Google Scholar 

  • Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2009) Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72:930–948

    PubMed  CAS  Google Scholar 

  • Cooper TG (2005) Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod 20:9–11

    PubMed  CAS  Google Scholar 

  • Cooper TG, Yeung C-H (2003) Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Techn 61:28–38

    Google Scholar 

  • Cooper NJ, McClean RV, Leigh CM, Breed WG (2001) Glycoconjugates on the surface of epididymal spermatozoa in a marsupial, the brushtail possum, Trichosurus vulpecula. Reproduction 122:165–176

    PubMed  CAS  Google Scholar 

  • Curry MR, Watson PF (1995) Sperm structure and function. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 45–69

    Google Scholar 

  • Dacheux JL, Dacheux F, Paquignon M (1989) Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol Reprod 40:635–651

    PubMed  CAS  Google Scholar 

  • Desantis S, Ventriglia G, Zizza S, Nicassio M, Valentini L, Di Summa A, Lacalandra GM (2010) Lectin-binding sites on ejaculated stallion sperm during breeding and non-breeding periods. Theriogenology 73:1146–1153

    PubMed  CAS  Google Scholar 

  • Diekman A (2003) Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell Mol Life Sci 60:298–308

    PubMed  CAS  Google Scholar 

  • Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B (2011) The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem 286:36875–36887

    PubMed  CAS  Google Scholar 

  • Ekhlasi-Hundrieser M, Sinowatz F, De Wilke IG, Waberski D, Töpfer-Petersen E (2002) Expression of spermadhesin genes in porcine male and female reproductive tracts. Mol Reprod Dev 61:32–41

    PubMed  CAS  Google Scholar 

  • Evans RW, Weaver DE, Clegg ED (1980) Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa. J Lipid Res 21:223–228

    PubMed  CAS  Google Scholar 

  • Fàbrega A, Puigmule M, Dacheux J-L, Bonet S, Pinart E (2011a) Glycocalyx characterization and glycoprotein expression of sus domesticus epididymal sperm surface samples. Reprod Fert Develop (published online, (http://dx.doi.org/10.1071/RD11064)

  • Fàbrega A, Guyonnet B, Dacheux J-L, Gatti J-L, Puigmule M, Bonet S, Pinart E (2011b) Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrin 9:96–109

    Google Scholar 

  • Fazeli A, Hage WJ, Cheng FP, Voorhout WF, Marks A, Bevers MM, Colenbrander B (1997) Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol Reprod 56:430–438

    PubMed  CAS  Google Scholar 

  • Flesch FM, Gadella BM (2000) Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim biophys acta (BBA)—reviews on. Biomembranes 1469:197–235

    CAS  Google Scholar 

  • Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R (2003) Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod 69:1586–1592

    PubMed  CAS  Google Scholar 

  • Gadella BM, Tsai P-S, Boerke A, Brewis IA (2008) Sperm head membrane reorganisation during capacitation. Int J Dev Biol 52:473–480

    PubMed  CAS  Google Scholar 

  • Gadella BM, Lopes-Cardoso M, van Golde LM, Colenbrander B, Gadella TW Jr (1995) Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event on boar spermatozoa. J Cell Sci 108:935–946

    PubMed  CAS  Google Scholar 

  • Gatti J-L, Druart X, Guerin Y, Dacheux F, Dacheux J-L (1999) A 105- to 94-kilodalton protein in the epididymal fluids of domestic mammals is angiotensin I-converting enzyme (ACE); evidence that sperm are the source of this ACE. Biol Reprod 60:937–945

    PubMed  CAS  Google Scholar 

  • Geussova G, Kalab P, Peknicova J (2002) Valosine containing protein is a substrate of cAMP—activated boar sperm tyrosine kinase. Mol Reprod Dev 63:366–375

    PubMed  CAS  Google Scholar 

  • Gitlits V, Toh B, Loveland K, Sentry J (2000) The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 79:104–111

    PubMed  CAS  Google Scholar 

  • Gonzalez-Urdiales R, Tejerina F, Domínguez JC, Alegre B, Ferreras A, Pelaez J, Bernal S, Cárdenas S (2006) Técnicas de análisis rutinario de la calidad espermática: motilidad, vitalidad, concentración, resistencia osmótica y morfología espermática. In Manual de Técnicas de Reproducción Asistida en Porcino, pp 19–38

    Google Scholar 

  • Gupta GS (2005) Sperm maturation in epididymis. In: Proteomics of spermatogenesis. Springer, New York, pp 811–837

    Google Scholar 

  • Haden NP, Hickox JR, Scott Whisnant C, Hardy DM (2000) Systematic characterization of sperm-specific membrane proteins in swine. Biol Reprod 63:1839–1847

    Google Scholar 

  • Hammerstedt RH, Hay SR, Amann RP (1982) Modification of ram sperm membranes during epididymal transit. Biol Reprod 27:745–754

    PubMed  CAS  Google Scholar 

  • Harayama H, Watanabe S, Masuda H, Kanan Y, Miyake M, Kato S (1998) Lectin-binding characeristics of extracts from epididymal boar spermatozoa. J Reprod Dev 44:21–27

    CAS  Google Scholar 

  • Harayama H, Miyake M, Kato S (1999) Immunolocalization of anti-agglutinin for spermatozoa in boars. Mol Reprod Dev 52:269–276

    PubMed  CAS  Google Scholar 

  • Hemachand T, Shaha C (2003) Functional role of sperm surface glutathione S-transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. FEBS Lett 538:14–18

    PubMed  CAS  Google Scholar 

  • Holt WV, Hernandez M, Warrell L, Satake N (2010) The long and the short of sperm selection in vitro and in vivo: swim-up techniques select for the longer and faster swimming mammalian sperm. J Evol Biol 23:598–608

    PubMed  CAS  Google Scholar 

  • Jiménez I, González-Márquez H, Ortiz R, Betancourt M, Herrera J, Fierro R (2002) Expression of lectin receptors on the membrane surface of sperm of fertile and subfertile boars by flow cytometry. Arch Androl 48:159–166

    PubMed  Google Scholar 

  • Jiménez I, González-Márquez H, Ortiz R, Herrera JA, García A, Betancourt M, Fierro R (2003) Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa. Theriogenology 59:1171–1180

    PubMed  Google Scholar 

  • Jonáková V, Manásková P, Kraus M, Liberda J, Tichá M (2000) Sperm surface proteins in mammalian fertilization. Mol Reprod Dev 56:275–277

    PubMed  Google Scholar 

  • Jones R, James PS, Howes L, Bruckbauer A, Klenerman D (2007) Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 9:438–444

    PubMed  CAS  Google Scholar 

  • Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mamamlian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79:421–431

    PubMed  CAS  Google Scholar 

  • Jury JA, Frayne J, Hall L (1997) The human fertilin alpha gene is non-functional: implications for its proposed role in fertilization. Biochem J 321:577–581

    PubMed  CAS  Google Scholar 

  • Kallajoki M, Malmi R, Virtanen I, Suominen J (1985) Glycoconjugates of human sperm surface. A study with fluorescent lectin conjugates and lens culinaris agglutinin affinity chromatography. Cell Biol Int Rep 9:151–164

    PubMed  CAS  Google Scholar 

  • Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Kim CS, Ryoo Z-Y, Kang HS, Chang KT (2010) Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm. Anim Reprod Sci 117:155–159

    PubMed  CAS  Google Scholar 

  • Kim E, Yamashita M, Nakanishi T, Park KE, Kimura M, Kashiwabara SI, Baba T (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 281:5634–5639

    PubMed  CAS  Google Scholar 

  • Kirchhoff C, Hale G (1996) Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod 2:177–184

    PubMed  CAS  Google Scholar 

  • Kuno M, Yonezawa N, Amari S, Hayashi M, Ono Y, Kiss L, Sonohara K, Nakano M (2000) The presence of a glycosyl phosphatidylinositol-anchored α-mannosidase in boar sperm. IUBMB Life 49:485–489

    PubMed  CAS  Google Scholar 

  • Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    PubMed  CAS  Google Scholar 

  • Liu HW, Wang JJ, Chao CF, Muller C (1991) Identification of two maturation-related, wheat-germ-lectin-binding proteins on the surface of mouse sperm. Acta Anat (Basel) 142:165–170

    CAS  Google Scholar 

  • López ML, Grez P, Gribbel I, Bustos-Obregón E (1989) Cytochemical and ultrastructural characteristics of the stallion epididymis (Equus caballus). J Submicrosc Cytol Pathol 21:103–120

    PubMed  Google Scholar 

  • Magargee SF, Kunze E, Hammerstedt RH (1988) Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation. Biol Reprod 38:667–685

    PubMed  CAS  Google Scholar 

  • Manásková P, Peknicová J, Elzeinová F, Tichá M, Jonáková V (2007) Origin, localization and binding abilities of boar DQH sperm surface protein tested by specific monoclonal antibodies. J Reprod Immun 74:103–113

    Google Scholar 

  • Mann T, Lutwak-Mann TC (1982) Male reproductive function and semen. Andrologia 14:76

    Google Scholar 

  • Martin RS (1982) Reproducción e inseminación artificial porcina. Aedos, Barcelona

    Google Scholar 

  • McLaughlin EA, Frayne J, Barker HL, Jury JA, Jones R, Ford WC, Hall L (1997) Cloning and sequence analysis of rat fertilin alpha and beta-developmental expression, processing and immunolocalization. Mol Hum Reprod 3:801–809

    PubMed  CAS  Google Scholar 

  • Mori E, Kashiwabara S, Baba T, Inagaki Y, Mori T (1995) Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev Biol 168:575–583

    PubMed  CAS  Google Scholar 

  • Navaneetham D, Sivashanmugam P, Rajalakshmi M (1996) Changes in binding of lectins to epididymal, ejaculated, and capacitated spermatozoa of the rhesus monkey. Anat Rec 245:500–508

    PubMed  CAS  Google Scholar 

  • Nicolson GL, Usui N, Yanagimachi R, Yanagimachi H, Smith JR (1977) Lectin-binding sites on the plasma membranes of rabbit spermatozoa: changes in surface receptors during epididymal maturation and after ejaculation. J Cell Biol 74:950–962

    PubMed  CAS  Google Scholar 

  • Nikolopoulou M, Soucek DA, Vary JC (1985) Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815:486–498

    PubMed  CAS  Google Scholar 

  • Nimtz M, Grabenhorst E, Conradt HS, Sanz L, Calvete J (1999) Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. Eur J Biochem 265:703–718

    PubMed  CAS  Google Scholar 

  • Okamura N, Dacheux F, Venien A, Onoe S, Huet JC, Dacheux JL (1992) Localization of a maturation-dependent epididymal sperm surface antigen recognized by a monoclonal antibody raised against a 135-kilodalton protein in porcine epididymal fluid. Biol Reprod 47:1040–1052

    PubMed  CAS  Google Scholar 

  • Overstreet JW, Lin Y, Yudin AI, Meyers SA, Primakoff P, Myles DG, Katz DF, Vandevoort CA (1995) Location of the PH-20 protein on acrosome-intact and acrosome-reacted spermatozoa of cynomolgus macaques. Biol Reprod 52:105–114

    PubMed  CAS  Google Scholar 

  • Parks JE, Lynch DV (1992) Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29:255–266

    PubMed  CAS  Google Scholar 

  • Pĕknicová J, Kubátová A, Sulimenko V, Dráberová E, Viklický V, Hozák P, Dráber P (2001) Differential subcellular distribution of tubulin epitopes in boar spermatozoa: recognition of class III β-tubulin epitope in sperm tail. Biol Reprod 65:672–679

    PubMed  Google Scholar 

  • Pelaez J, Long JA (2007) Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy. J Androl 28:342–352

    PubMed  CAS  Google Scholar 

  • Peterson R, Chaudhry P, Tibbs B (1989) Calcium-binding proteins of boar spermatozoan plasma membranes: identification and partial characterization. Gamete Res 23:49–60

    PubMed  CAS  Google Scholar 

  • Petrunkina AM, Harrison RAP, Töpfer-Petersen E (2000) Only low levels of spermadhesin AWN are detectable on the surface of live ejaculated boar spermatozoa. Reprod Fert Develop 12:361–371

    CAS  Google Scholar 

  • Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Töpfer-Petersen E (2001) Selective sperm binding to pig oviductal epithelium in vitro. Reproduction 121:889–896

    PubMed  CAS  Google Scholar 

  • Petrunkina AM, Lakamp A, Gentzel M, Ekhlasi-Hundrieser M, Töpfer-Petersen E (2003) Fate of lactadherin P47 during post-testicular maturation and capacitation of boar spermatozoa. Reproduction 125:377–387

    PubMed  CAS  Google Scholar 

  • Petruszak JA, Nehme CL, Bartles JR (1991) Endoproteolytic cleavage in the extracellular domain of the integral plasma membrane protein CE9 precedes its redistribution from the posterior to the anterior tail of the rat spermatozoon during epididymal maturation [published erratum appears in J Cell Biol 1991 Nov; 115(3): following 880]. J Cell Biol 114:917–927

    PubMed  CAS  Google Scholar 

  • Phelps BM, Koppel DE, Primakoff P, Myles DG (1990) Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J Cell Biol 111:1839–1847

    PubMed  CAS  Google Scholar 

  • Primakoff P, Hyatt H, Myles DG (1985) A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol 101:2239–2244

    PubMed  CAS  Google Scholar 

  • Pruneda A, Pinart E, Bonet S, Yeung C-H, Cooper T (2006) Study of the polyol pathway in the porcine epididymis. Mol Reprod Dev 73:859–865

    PubMed  CAS  Google Scholar 

  • Pruneda A, Pinart E, Briz M, Sancho S, García-Gil N, Badia E, Kádár E, Bassols J, Bussalleu E, Yeste M, Bonet S (2005) Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 63:2219–2232

    PubMed  Google Scholar 

  • Puigmulé M, Fàbrega A, Yeste M, Bonet S, Pinart E (2011) Study of the proacrosin/acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatozoa. Reprod Fert Develop 23:837–845

    Google Scholar 

  • Puri P, Myers K, Kline D, Vijayaraghavan S (2008) Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism. Biol Reprod 79:1183–1191

    PubMed  CAS  Google Scholar 

  • Rao DS, Chang JC, Kumar PD, Mizukami I, Smithson GM, Bradley SV, Parlow AF, Ross TS (2001) Huntingtin interacting protein 1 is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors. Mol Cell Biol 21:7796–7806

    PubMed  CAS  Google Scholar 

  • Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S (2007) Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134:111–121

    PubMed  CAS  Google Scholar 

  • Sanz L, Calvete JJ, Mann K, Schöpfer W, Schmid ER, Töpfer-Petersen E (1991) The amino acid sequence of AQN-3, a carbohydrate-binding protein isolated from boar sperm location of disulphide bridges. FEBS Lett 291:33–36

    PubMed  CAS  Google Scholar 

  • Schroter S, Osterhoff C, McArdle W, Ivell R (1999) The glycocalyx of the sperm surface. Hum Reprod Update 5:302–313

    PubMed  CAS  Google Scholar 

  • Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC (2003) SAMP14, a novel acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515

    PubMed  CAS  Google Scholar 

  • Simpson AM, Swan MA, White IG (1987) Susceptibility of epididymal boar sperm to cold shock and protective action of phosphatidylcholine. Gamete Res 17:355–373

    PubMed  CAS  Google Scholar 

  • Spinaci M, Volpe S, Bernardini C, De Ambrogi M, Tamanini C, Giovanna Galeati ES (2005) Immunolocalization of heat shock protein 70 (Hsp 70) in boar spermatozoa and its role during fertilization. Mol Reprod Dev 72:534–541

    Google Scholar 

  • Spinaci M, Volpe S, Bernardini C, de Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27:899–907

    PubMed  CAS  Google Scholar 

  • Srivastav A (2000) Maturation-dependent glycoproteins containing both N- and O-linked oligosaccharides in epididymal sperm plasma membrane of rhesus monkeys (Macaca mulatta). J Reprod Fertil 119:241–252

    PubMed  CAS  Google Scholar 

  • Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL (1996) Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol Reprod 55:956–974

    PubMed  CAS  Google Scholar 

  • Taitzoglou IA, Kokoli AN, Killian GJ (2007) Modifications of surface carbohydrates on bovine spermatozoa mediated by oviductal fluid: a flow cytometric study using lectins. Int J Androl 30:108–114

    Google Scholar 

  • Thaler CD, Cardullo RA (1995) The mammalian sperm surface: molecular and cellular aspects. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 20–44

    Google Scholar 

  • Töpfer-Petersen E (1999) Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum Reprod Update 5:314–329

    PubMed  Google Scholar 

  • Töpfer-Petersen E, Ekhlasi-Hundrieser M, Tsolova M (2008) Glycobiology of fertilization in the pig. Int J Dev Biol 52:717–736

    PubMed  Google Scholar 

  • Tulsiani DR, Skudlarek MD, Holland MK, Orgebin-Crist MC (1993) Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol Reprod 48:417–428

    PubMed  CAS  Google Scholar 

  • Van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM (2007) Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod 13:445–454

    PubMed  Google Scholar 

  • Waberski D, Meding S, Dirksen G, Weitze KF, Leiding C, Hahn R (1994) Fertility of long-term-stored boar semen: influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36:145–151

    Google Scholar 

  • Wagner A, Ekhlasi-Hundrieser M, Hettel C, Petrunkina A, Waberski D, Nimtz M, Töpfer-Petersen E (2002) Carbohydrate-based interactions of oviductal sperm reservoir formation-studies in the pig. Mol Reprod Dev 61:249–257

    PubMed  CAS  Google Scholar 

  • Walker JM, Gravel P, Golaz O (1996) Identification of glycoproteins on nitrocellulose membranes using lectin blotting. In: Walker JM (ed) The protein protocols handbook. Humana Press, England, pp 603–617

    Google Scholar 

  • Waters SI, White JM (1997) Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol Reprod 56:1245–1254

    PubMed  CAS  Google Scholar 

  • White IG (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fert Develop 5:639–658

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Briz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Briz, M., Fàbrega, A. (2013). The Boar Spermatozoon. In: Bonet, S., Casas, I., Holt, W., Yeste, M. (eds) Boar Reproduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35049-8_1

Download citation

Publish with us

Policies and ethics