Skip to main content

Equipment

  • Chapter
  • First Online:
Electromigration Techniques

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 105))

Abstract

This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Felhofer, L. Blanes, C.D. Garcia, Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 31(15), 2469–2486 (2010)

    Article  Google Scholar 

  2. Q. Li, H. Zhang, Y. Wang, B. Tang, X. Liu, X. Gong, Versatile programmable eight-path-electrode power supply for automatic manipulating microfluids of a microfluidic chip. Sens. Actuators B. Chem. 136(1), 265–274 (2009)

    Article  Google Scholar 

  3. L. Jiang, X. Jiang, Y. Lu, Z. Dai, M. Xie, J. Qin, B. Lin, Development of a universal serial bus-powered mini-high-voltage power supply for microchip electrophoresis. Electrophoresis 28(8), 1259–1264 (2007)

    Article  Google Scholar 

  4. T. Tsuda, J.V. Sweedler, R.N. Zare, Rectangular capillaries for capillary zone electrophoresis. Anal. Chem. 62(19), 2149–2152 (1990)

    Article  Google Scholar 

  5. S.X. Lu, E.S. Yeung, Side-entry excitation and detection of square capillary array electrophoresis for DNA sequencing. J. Chromatogr. A 853(1–2), 359–369 (1999)

    Google Scholar 

  6. D.R. Baker, Capillary Electrophoresis Techniques in Analytical Chemistry (Wiley, New York, 1995)

    Google Scholar 

  7. C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, A fully integrated microfluidic genetic analysis system with sample-in answer-out capability. Proc. Natl. Acad. Sci. U. S. A. 103(51), 19272–19277 (2006)

    Article  ADS  Google Scholar 

  8. T. Wang, J.H. Aiken, C.W. Huie, R.A. Hartwick, Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis. Anal. Chem. 63(14), 1372–1376 (1991)

    Article  Google Scholar 

  9. S. Hjertén, K. Elenbring, F. Kilár, J.L. Liao, A.J.C. Chen, C.J. Seibert, M.D. Zhu, Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr. 403, 47–61 (1987)

    Article  Google Scholar 

  10. F. Foret, S. Fanali, L. Ossicini, P. Bocek, Indirect photometric detection in capillary zone electrophoresis. J. Chromatogr. 470, 299–308 (1989)

    Article  Google Scholar 

  11. F.-B. Yang, J.-Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78(3), 1155–1158 (2009)

    Article  Google Scholar 

  12. S. Nagaraj, H. Karnes, Comparison of orthogonal and collinear geometric approaches for design of a laboratory constructed diode laser induced fluorescence detector for capillary electrophoresis. Instrum. Sci. Technol. 28(2), 119 (2000)

    Article  Google Scholar 

  13. A. Malek, M.G. Khaledi, Steroid analysis in single cells by capillary electrophoresis with collinear laser-induced fluorescence detection. Anal. Biochem. 270(1), 50–58 (1999)

    Article  Google Scholar 

  14. L. Hernandez, N. Joshi, E. Murzi, P. Verdeguer, J.C. Mifsud, N. Guzman, Collinear laser-induced fluorescence detector for capillary electrophoresis: analysis of glutamic acid in brain dialysates. J. Chromatogr. A 652(2), 399–405 (1993)

    Article  Google Scholar 

  15. J.-L. Fu, Q. Fang, T. Zhang, X.-H. Jin, Z.-L. Fang, Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement. Anal. Chem. 78(11), 3827–3834 (2006)

    Article  Google Scholar 

  16. L. Hernandez, J. Escalona, N. Joshi, N. Guzman, Laser-induced fluorescence and fluorescence microscopy for capillary electrophoresis zone detection. J. Chromatogr. 559, 183–196 (1991)

    Article  Google Scholar 

  17. C. Yan, R. Dadoo, H. Zhao, R.N. Zare, D.J. Rakestraw, Capillary electrochromatography: analysis of polycyclic aromatic hydrocarbons. Anal. Chem. 67(13), 2026–2029 (1995)

    Article  Google Scholar 

  18. J&M Information materials

    Google Scholar 

  19. X. Le, C. Scaman, Y. Zhang, J. Zhang, N.J. Dovichi, O. Hindsgaul, M.M. Palcic, Analysis by capillary electrophoresis-laser-induced fluorescence detection of oligosaccharides produced from enzyme reactions. J. Chromatogr. A 716(1–2), 215–220 (1995)

    Google Scholar 

  20. H.A. Bardelmeijer, H. Lingeman, C. de Ruiter, W.J.M. Underberg, Derivatization in capillary electrophoresis. J. Chromatogr. A 807, 3–26 (1998)

    Article  Google Scholar 

  21. K. Swinney, J. Pennington, D.J. Bornhop, Ion analysis using capillary electrophoresis with refractive index detection. Microchem. J. 62(1), 154–163 (1999)

    Article  Google Scholar 

  22. B. Krattiger, G.J.M. Bruin, A.E. Bruno, Hologram-based refractive index detector for capillary electrophoresis: separation of metal ions. Anal. Chem. 66(1), 1–8 (1994)

    Article  Google Scholar 

  23. M. Albin, R. Weinberger, E. Sapp, S. Moring, Fluorescence detection in capillary electrophoresis: evaluation of derivatizing reagents and techniques. Anal. Chem. 63, 417–422 (1991)

    Article  Google Scholar 

  24. H. Zhu, I.M. White, J.D. Suter, M. Zourob, X. Fan, Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal. Chem. 79(3), 930–937 (2006)

    Article  Google Scholar 

  25. T. Kappes, P.C. Hauser, Electrochemical detection methods in capillary electrophoresis and applications to inorganic species. J. Chromatogr. A 834(1–2), 89–101 (1999)

    Google Scholar 

  26. B.L. De Backer, L.J. Nagels, Potentiometric detection for capillary electrophoresis: determination of organic acids. Anal. Chem. 68(24), 4441–4445 (1996)

    Article  Google Scholar 

  27. R.M. Guijt, C.J. Evenhuis, M. Macka, P.R. Haddad, Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis 25(23–24), 4032–4057 (2004)

    Article  Google Scholar 

  28. X. Huang, T.K.J. Pang, M.J. Gordon, R.N. Zare, On-column conductivity detector for capillary zone electrophoresis. Anal. Chem. 59(23), 2747–2749 (1987)

    Article  Google Scholar 

  29. S. Kar, P.K. Dasgupta, H. Liu, H. Hwang, Computer-interfaced bipolar pulse conductivity detector for capillary systems. Anal. Chem. 66(15), 2537–2543 (1994)

    Article  Google Scholar 

  30. P.K. Dasgupta, L. Bao, Suppressed conductometric capillary electrophoresis separation systems. Anal. Chem. 65(8), 1003–1011 (1993)

    Article  Google Scholar 

  31. B. Graß, D. Siepe, A. Neyer, R. Hergenröder, Comparison of different conductivity detector geometries on an isotachophoresis PMMA-microchip. Fresenius J. Anal. Chem. 371(2), 228–233 (2001)

    Article  Google Scholar 

  32. M. Galloway, W. Stryjewski, A. Henry, S.M. Ford, S. Llopis, R.L. McCarley, S. Soper, A Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. Anal. Chem. 74(10), 2407–2415 (2002)

    Article  Google Scholar 

  33. S. Hu, Z.-L. Wang, P.-B. Li, J.-K. Cheng, Amperometric detection in capillary electrophoresis with an etched joint. Anal. Chem. 69(2), 264–267 (1997)

    Article  Google Scholar 

  34. W.R. Vandaveer, S.A. Pasas, R.S. Martin, S.M. Lunte, Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis 23(21), 3667–3677 (2002)

    Article  Google Scholar 

  35. M. Nosowicz (2008) Techniki sprzężone w zminiaturyzowanych układach analitycznych. Dissertation, Nicolaus Copernicus University, Toruń

    Google Scholar 

  36. G. Choudhary, A. Apffel, H. Yin, W. Hancock, Use of on-line mass spectrometric detection in capillary electrochromatography. J. Chromatogr. A 887, 85–101 (2000)

    Article  Google Scholar 

  37. K. Albert, On-line LC-NMR and related techniques (Wiley, Chichester, 2002)

    Book  Google Scholar 

  38. D.A. Jayawickrama, J.V. Sweedler, Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1000, 819–840 (2003)

    Article  Google Scholar 

  39. P. Kubáň, H.T.A. Nguyen, M. Macka, P.R. Haddad, Hauser PC new fully portable instrument for the versatile determination of cations and anions by capillary electrophoresis with contactless conductivity detection. Electroanalysis 19(19–20), 2059–2065 (2007)

    Google Scholar 

  40. M. Ryvolová, M. Macka, M. Ryvolová, J. Preisler, M. Macka, Portable capillary-based (non-chip) capillary electrophoresis. TrAC, Trends Anal. Chem. 29(4), 339–353 (2010)

    Article  Google Scholar 

  41. A. Seiman, J. Martin, M. Vaher, M. Kaljurand, A portable capillary electropherograph equipped with a cross-sampler and a contactless-conductivity detector for the detection of the degradation products of chemical warfare agents in soil extracts. Electrophoresis 30(3), 507–514 (2009)

    Article  Google Scholar 

  42. A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund, F.J. Grunthaner, J.L. Bada, R.A. Mathies, Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc. Natl. Acad. Sci. U. S. A. 102(4), 1041–1046 (2005)

    Article  ADS  Google Scholar 

  43. C. Berg, D.C. Valdez, P. Bergeron, M.F. Mora, C.D. Garcia, A. Ayon, Lab-on-a-robot: Integrated microchip CE, power supply, electrochemical detector, wireless unit, and mobile platform. Electrophoresis 29(24), 4914–4921 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Szumski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szumski, M. (2013). Equipment. In: Buszewski, B., Dziubakiewicz, E., Szumski, M. (eds) Electromigration Techniques. Springer Series in Chemical Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35043-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35043-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35042-9

  • Online ISBN: 978-3-642-35043-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics