Skip to main content

Elements of a Semantic Code

  • Chapter
  • First Online:

Abstract

An important step towards a scientific understanding of complex systems will be the objectification and quantification of information that carries semantics, i.e., sense and meaning. In this paper a concept is developed according to which the general aspects of semantics—such as novelty, pragmatic relevance, selectivity, complexity and others—are understood as elements of a “semantic code”. However, in contrast to its traditional usage, the term “code” does not refer to a set of rules for assignment or translation of symbols, but rather to a reservoir of value elements, from which the recipient configures a value scale for the evaluation of semantic information. A quantitative measure for the value scale is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here the two terms sense and meaning are used synonymously, and the distinction between them that is usual in linguistic philosophy is not retained.

References

  1. Bar-Hillel, Y., Carnap, R.: Semantic information. Br. J. Philos. Sci. 4: 147–157 (1953)

    Article  MathSciNet  Google Scholar 

  2. Boltzmann, L.: Vorlesungen ber Gastheorie, 2 Bd. J. A. Barth, Leipzig (1896/1898)

    Google Scholar 

  3. Cassirer, E.: Substanzbegriff und Funktionsbegriff. Wissenschafliche Buchgesellschaft, Darmstadt (1980)

    Google Scholar 

  4. Chaitin, G.J.: On the length of programs for computing finite binary sequences. J. Assoc. Comput. Mach. 13, 547 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deleuze, G.: Woran erkennt man den Strukturalismus?, p. 8. Merve, Berlin (author’s translation) (1992)

    Google Scholar 

  6. Eigen, M.: Selforganisation of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)

    Article  Google Scholar 

  7. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)

    Google Scholar 

  8. Kolmogorov, A.N.: Three approaches to the qunatitative definition of information. Problemy Peredachi Informatsii 1, 3–11 (1965)

    MathSciNet  MATH  Google Scholar 

  9. Küppers, B.-O.: Information and the Origin of Life. MIT, New York (1990)

    Google Scholar 

  10. Küppers, B.-O.: The context-dependence of biological information. In: Kornwachs, K., Jacoby, K. (eds.) Information. New Questions to a Multidisciplinary Concept, pp. 135–145. Akademie Verlag, Berlin (1995)

    Google Scholar 

  11. Küppers, B.-O.: Der semantische Aspekt von Information und seine evolutionsbiologische Bedeutung. Nova Acta Leopoldina 294, 195–219 (1996)

    Google Scholar 

  12. Küppers, B.-O.: Information and communication in living matter. In: Davies, P., Gregersen, N.H. (eds.) Information and the Nature of Reality, pp. 170–184. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  13. McKay, D.: Information, Mechanism and Meaning. MIT, New York (1969)

    Google Scholar 

  14. Rényi, A.: Probability Theory. Elsevier, Amsterdam (1970)

    Google Scholar 

  15. Schrödinger, E.: What is Life?. Cambridge University Press, Cambridge (1944)

    Google Scholar 

  16. Searls, D.B.: The language of genes. Nature 420, 211–217 (2002)

    Article  Google Scholar 

  17. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  18. Solomonoff, R.J.: A formal theory of inductive inference. Inform. Contrl. 7, 1–22, 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weaver, W., Shannon, C.E.: The Mathematical Theory of Communication, p. 8. University of Illinois Press, London (1963)

    Google Scholar 

  20. von Weizsäcker, C.F.: The Unity of Nature. Farrar Straus Giroux, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd-Olaf Küppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Küppers, BO. (2013). Elements of a Semantic Code. In: Küppers, BO., Hahn, U., Artmann, S. (eds) Evolution of Semantic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34997-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34997-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34996-6

  • Online ISBN: 978-3-642-34997-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics