Advertisement

Structuring of Nanoparticles Confined Between a Silica Microsphere and an Air Bubble

  • Yan ZengEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter contributes to the understanding of effects of confining surface deformability on the interaction within thin liquid films of colloidal nanoparticles. The influence of surfactant on the surface deformability and then on the structuring of the nanoparticles is investigated. The oscillatory force caused by the layering of the nanoparticles is detected between the AFM microsphere probe and an air bubble, and the oscillatory wavelength that reflects the interlayer distance of the nanoparticles is found to scale with colloidal nanoparticle concentration as \(\phi ^{-1/3}\). Under constant experimental conditions (AFM probe radius, bubble size, Debye length and contact angle), the bubble stiffness is found to increase linearly with surface tension, while the oscillatory wavelength is not affected by the bubble deformability. In addition, cationic surfactant C\(_{16}\) TAB display a different behavior on the retraction part of the force curve, in which a pronounced adhesion force is observed. This phenomenon might be attributed to the hydrophobic effect caused by the monolayer formation of cationic surfactant on the silica sphere surface. Thus a stable thin film of colloidal nanoparticles is assumed to be formed between the silica microsphere and the bubble when strong repulsive interaction exists.

Keywords

Contact Angle Silica Nanoparticles Cationic Surfactant Debye Length Nanoparticle Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nikolov, A., & Wasan, D. (1989). Journal of Colloid and Interface Science, 133, 1–12.CrossRefGoogle Scholar
  2. 2.
    Bergeron, V., & Radke, C. (1992). Langmuir, 8, 3020–3026.CrossRefGoogle Scholar
  3. 3.
    Nikolov, A., & Wasan, D. (1992). Langmuir, 8, 2985–2994.CrossRefGoogle Scholar
  4. 4.
    Kralchevsky, P., Nikolov, A., Wasan, D., & Ivanov, I. (1990). Langmuir, 6, 1180–1189.CrossRefGoogle Scholar
  5. 5.
    Mauser, T. Diplomarbeit, TU Berlin.Google Scholar
  6. 6.
    Ducker, W., Xu, Z., & Israelachvili, J. (1994). Langmuir, 10, 3279–3289.CrossRefGoogle Scholar
  7. 7.
    Butt, H. (1994). Journal of Colloid and Interface Science, 166, 109–117.CrossRefGoogle Scholar
  8. 8.
    Preuss, M., & Butt, H. (1998). Langmuir, 14, 3164–3174.CrossRefGoogle Scholar
  9. 9.
    Preuss, M., & Butt, H. (1999). International Journal of Mineral Processing, 56, 99–115.CrossRefGoogle Scholar
  10. 10.
    Gillies, G., Buscher, K., Preuss, M., Kappl, M., Butt, H., & Graf, K. (2005). Journal of Physics: Condensed Matter, 17, S445–S464.ADSCrossRefGoogle Scholar
  11. 11.
    Dagastine, R., Stevens, G., Chan, D., & Grieser, F. (2004). Journal of Colloid and Interface Science, 273, 339–342.CrossRefGoogle Scholar
  12. 12.
    Vakarelski, I. U., Lee, J., Dagastine, R. R., Chan, D. Y. C., Stevens, G. W., & Grieser, F. (2008). Langmuir, 24, 603–605.CrossRefGoogle Scholar
  13. 13.
    Miklavcic, S., Horn, R., & Bachmann, D. (1995). Journal of Physical Chemistry, 99, 16357–16364.CrossRefGoogle Scholar
  14. 14.
    Ralston, J., & Dukhin, S. (1999). Colloids and Surfaces A, 151, 3–14.CrossRefGoogle Scholar
  15. 15.
    Nguyen, A., Nalaskowski, J., & Miller, J. (2003). Journal of Colloid and Interface Science, 262, 303–306.CrossRefGoogle Scholar
  16. 16.
    Chan, D., Dagastine, R., & White, L. (2001). Journal of Colloid and Interface Science, 236, 141–154.CrossRefGoogle Scholar
  17. 17.
    Gillies, G., Prestidge, C., & Attard, P. (2001). Langmuir, 17, 7955–7956.CrossRefGoogle Scholar
  18. 18.
    Collins, G., Motarjemi, M., & Jameson, G. (1978). Journal of Colloid and Interface Science, 63, 69–75.CrossRefGoogle Scholar
  19. 19.
    Graciaa, A., Creux, P., Lachaise, J., & Salager, J. (2000). Industrial and Engineering Chemistry Research, 39, 2677–2681.CrossRefGoogle Scholar
  20. 20.
    Ciunel, K., Armelin, M., Findenegg, G., & von Klitzing, R. (2005). Langmuir, 21, 4790–4793.CrossRefGoogle Scholar
  21. 21.
    Fielden, M., Hayes, R., & Ralston, J. (1996). Langmuir, 12, 3721–3727.CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Somasundaran, P., & Maltesh, C. (1997). Journal of Colloid and Interface Science, 191, 202–208.CrossRefGoogle Scholar
  23. 23.
    Lugo, D., Oberdisse, J., Karg, M., Schweins, R., & Findenegg, G. H. (2009). Soft Matter, 5, 2928–2936.ADSCrossRefGoogle Scholar
  24. 24.
    Schulze, H., & Cichos, C. (1972). Zeitschrift fuer Physikalische Chemie (Leipzig, Germany), 251, 252–268.Google Scholar
  25. 25.
    Bijsterbosch, B. (1974). Journal of Colloid and Interface Science, 47, 186–198.CrossRefGoogle Scholar
  26. 26.
    Rutland, M., & Parker, J. (1994). Langmuir, 10, 1110–1121.CrossRefGoogle Scholar
  27. 27.
    Fleming, B., Biggs, S., & Wanless, E. (2001). Journal of Physical Chemistry B, 105, 9537–9540.CrossRefGoogle Scholar
  28. 28.
    Attard, P., & Miklavcic, S. (2001). Langmuir, 17, 8217–8223.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations