Structuring of Nanoparticles Between Modified Solid Surfaces

  • Yan ZengEmail author
Part of the Springer Theses book series (Springer Theses)


In order to investigate the effect of confining surfaces on the structuring of nanoparticles in between, confining surface is modified by either attaching a mica sheet on the silica substrate or physically adsorbing polyelectrolytes on silica surfaces with layer-by-layer technique. In the first case, only the surface potential (or surface charge) is tuned. AFM force measurements show an enhanced amplitude in oscillatory forces while the wavelength and correlation length remain constant with increasing confining surface potential. This is an outcome of reduced particle-wall interaction range, due to the fact that the charged walls release additional counterions accumulated in a thin layer at the wall surfaces and contributed to the Debye length of particle-wall interaction. As a consequence, more particles can be accumulated inside the slit. In the second case, the effect of layer-by-layer modification on the surface potential and the surface roughness are also studied. Experimental findings reveal that the layer-by-layer technique modifies the surface roughness without changing the surface potential of a multilayer with the same outermost layer, by increasing number of constituent layers, ionic strength of the polyelectrolyte solutions, and by selecting an appropriate pair of polyelectrolytes. Wavelength and decay length are not affected by the surface roughness. The corresponding reduction in the oscillatory amplitude and the shift in the phase correlate with the increase in surface roughness. Increasing surface roughness further induces a vanishing of the oscillations and both confining surfaces contribute to the effect of surface roughness on the force reduction. In order to show an oscillatory force, the particles have to show positional correlation over a reasonably long range perpendicular to the surface and the correlation function should be the same over a larger lateral area. This requires that both the particles and the surfaces have a high degree of order or symmetry, otherwise the oscillation does not occur. A roughness of a few nanometers on a single surface, which corresponds to about 10 % of the nanoparticle diameter, is sufficient to eliminate the oscillatory force.


Silicon Wafer Surface Potential Force Curve Oscillatory Force Force Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Israelachvili, J., & Pashley, R. (1983). Nature, 306, 249–250.ADSCrossRefGoogle Scholar
  2. 2.
    Stubenrauch, C., & von Klitzing, R. (2003). Journal of Physics: Condensed Matter, 15, R1197–R1232.ADSCrossRefGoogle Scholar
  3. 3.
    Evans, R., Henderson, J., Hoyle, D., Parry, A., & Sabeur, Z. (1993). Molecular Physics, 80, 755–775.ADSCrossRefGoogle Scholar
  4. 4.
    Grodon, C., Dijkstra, M., Evans, R., & Roth, R. (2005). Molecular Physics, 103, 3009–3023.ADSCrossRefGoogle Scholar
  5. 5.
    Grandner, S., Zeng, Y., v. Klitzing, R., & Klapp, S. H. L. (2009). Journal of Chemical Physics, 131, 154702.ADSCrossRefGoogle Scholar
  6. 6.
    Hansen, I. R., & McDonald, J. P. (2006). Theory of simple liquids (3rd ed.). Amsterdam: Academic Press.Google Scholar
  7. 7.
    Hansen, J., & Lowen, H. (2000). Annual Review of Physical Chemistry, 51, 209–242.ADSCrossRefGoogle Scholar
  8. 8.
    Bhattacharjee, S., Elimelech, M., & Borkovec, M. (1998). Croatica Chemica Acta, 71, 883–903.Google Scholar
  9. 9.
    Denton, A., & Lowen, H. (1998). Thin Solid Films, 330, 7–13.ADSCrossRefGoogle Scholar
  10. 10.
    Allahyarov, E., D’Amico, I., & Lowen, H. (1999). Physical Review E, 60, 3199–3210.ADSCrossRefGoogle Scholar
  11. 11.
    Loewen, H., Haertel, A., Barreira-Fontecha, A., Schoepe, H. J., Allahyarov, E., & Palberg, T. (2008). Journal of Physics: Condensed Matter, 20, 404221.CrossRefGoogle Scholar
  12. 12.
    Curry, J., Zhang, F., Cushman, J., Schoen, M., & Diestler, D. (1994). Journal of Chemical Physics, 101, 10824–10832.ADSCrossRefGoogle Scholar
  13. 13.
    Gao, J., Luedtke, W., & Landman, U. (2000). Tribology Letters, 9, 3–13.CrossRefGoogle Scholar
  14. 14.
    Frink, L., & van Swol, F. (1998). Journal of Chemical Physics, 108, 5588–5598.ADSCrossRefGoogle Scholar
  15. 15.
    Diestler, D., & Schoen, M. (2000). Physical Review E, 62, 6615–6627.ADSCrossRefGoogle Scholar
  16. 16.
    Porcheron, F., Schoen, M., & Fuchs, A. (2002). Journal of Chemical Physics, 116, 5816–5824.ADSCrossRefGoogle Scholar
  17. 17.
    Christenson, H. (1986). Journal of Physical Chemistry, 90, 4–6.CrossRefGoogle Scholar
  18. 18.
    Decher, G. (1997). Science, 277, 1232–1237.CrossRefGoogle Scholar
  19. 19.
    Decher, G., & Schlenoff, J. (2003). Multilayer thin films. Weinheim: Wiley-VCH.Google Scholar
  20. 20.
    von Klitzing, R. (2006). Physical Chemistry Chemical Physics, 8, 5012–5033.CrossRefGoogle Scholar
  21. 21.
    Kovacevic, D., Van der Burgh, S., de Keizer, A., & Stuart, M. (2002). Langmuir, 18, 5607–5612.CrossRefGoogle Scholar
  22. 22.
    Schlenoff, J., & Dubas, S. (2001). Macromolecules, 34, 592–598.ADSCrossRefGoogle Scholar
  23. 23.
    Steitz, R., Leiner, V., Siebrecht, R., & von Klitzing, R. (2000). Colloids and Surfaces A, 163, 63–70.CrossRefGoogle Scholar
  24. 24.
    Qu, D., Brotons, G., Bosio, V., Fery, A., Salditt, T., Langevin, D., et al. (2007). Colloids and Surfaces A, 303, 97–109.CrossRefGoogle Scholar
  25. 25.
    Lowack, K., & Helm, C. (1998). Macromolecules, 31, 823–833.ADSCrossRefGoogle Scholar
  26. 26.
    Kovacevic, D., van der Burgh, S., de Keizer, A., & Stuart, M. (2003). Journal of Physical Chemistry B, 107, 7998–8002.CrossRefGoogle Scholar
  27. 27.
    Ruths, J., Essler, F., Decher, G., & Riegler, H. (2000). Langmuir, 16, 8871–8878.CrossRefGoogle Scholar
  28. 28.
    Sukhorukov, G., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V., et al. (1998). Polymers for Advanced Technologies, 9, 759–767.CrossRefGoogle Scholar
  29. 29.
    Smith, R., McCormick, M., Barrett, C., Reven, L., & Spiess, H. (2004). Macromolecules, 37, 4830–4838.ADSCrossRefGoogle Scholar
  30. 30.
    Bosio, V., Dubreuil, F., Bogdanovic, G., & Fery, A. (2004). Colloids and Surfaces A, 243, 147–155.CrossRefGoogle Scholar
  31. 31.
    Dejeu, J., Buisson, L., Guth, M. C., Roidor, C., Membrey, F., Charraut, D., et al. (2006). Colloids and Surfaces A, 288, 26–35.CrossRefGoogle Scholar
  32. 32.
    Schwarz, B., & Schonhoff, M. (2002). Langmuir, 18, 2964–2966.CrossRefGoogle Scholar
  33. 33.
    Chan, D., Pashley, R., & White, L. J. (1980). Journal of Colloid and Interface Science, 77, 283–285.CrossRefGoogle Scholar
  34. 34.
    Burke, S., & Barrett, C. (2004). Pure and Applied Chemistry, 76, 1387–1398.CrossRefGoogle Scholar
  35. 35.
    Richert, L., Boulmedais, F., Lavalle, P., Mutterer, J., Ferreux, E., Decher, G., et al. (2004). Biomacromolecules, 5, 284–294.CrossRefGoogle Scholar
  36. 36.
    Burke, S., & Barrett, C. (2005). Biomacromolecules, 6, 1419–1428.CrossRefGoogle Scholar
  37. 37.
    Lowman, G., & Buratto, S. (2002). Thin Solid Films, 405, 135–140.ADSCrossRefGoogle Scholar
  38. 38.
    Soltwedel, O., Ivanova, O., Nestler, P., Mueller, M., Koehler, R., & Helm, C. A. (2010). Macromolecules, 43, 7288–7293.ADSCrossRefGoogle Scholar
  39. 39.
    Ricotti, L., Taccola, S., Bernardeschi, I., Pensabene, V., Dario, P., & Menciassi, A. (2011). Biomedical Materials, 6, 031001.ADSCrossRefGoogle Scholar
  40. 40.
    Dubas, S., & Schlenoff, J. (2001). Macromolecules, 34, 3736–3740.ADSCrossRefGoogle Scholar
  41. 41.
    Losche, M., Schmitt, J., Decher, G., Bouwman, W., & Kjaer, K. (1998). Macromolecules, 31, 8893–8906.ADSCrossRefGoogle Scholar
  42. 42.
    Roma-Luciow, R., Sarraf, L., & Morcellet, M. (2000). Polymer Bulletin, 45, 411–418.CrossRefGoogle Scholar
  43. 43.
    Choi, J., & Rubner, M. (2005). Macromolecules, 38, 116–124.ADSCrossRefGoogle Scholar
  44. 44.
    Kleinschmidt, F., Stutbenrauch, C., Delacotte, J., von Klitzing, R., & Langevin, D. (2009). Journal of Physical Chemistry B, 113, 3972–3980.CrossRefGoogle Scholar
  45. 45.
    Bonaccurso, E., Butt, H., & Craig, V. (2003). Physical Review Letters, 90, 144501.ADSCrossRefGoogle Scholar
  46. 46.
    Piech, M., & Walz, J. (2002). Journal of Colloid and Interface Science, 253, 117–129.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations