Advertisement

Structuring of Nanoparticle Suspensions Confined Between Two Smooth Solid Surfaces

  • Yan ZengEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Combining colloidal-probe atomic force microscopy and small angle X-ray scattering, the characteristic lengths determining the structuring of nanoparticle suspensions confined between two smooth solid surfaces are analyzed. Monte Carlo simulations and integral equation theory are included to understand the interparticle and particle-confining surface interactions. The oscillation, which indicates the layered formation of particles, is determined by the dominant wavelength and correlation length of the bulk pair correlation function. As a consequence, confined and bulk quantities display the same power-law dependence. This indicates that, in a system treatable both by experiments and by simulation, the structural wavelength and correlation length both in bulk and confinement coincide. Moreover, theoretically and experimentally-derived wavelengths are in excellent quantitative agreement, while correlation lengths are in qualitative agreement. Influential factors on wavelength and correlation length are studied. The wavelength is found to be a simple consequence of volume-effect, scaling as \(\rho ^{-1/3}\), irrespective of the particle size and the ionic strength. The correlation length, on the other hand, is found to be a function of these two parameters, \(\xi = R+\kappa ^{-1}\). Both experimental and theoretical results show a pronounced interaction amplitude and range as a result of increasing particle concentration, particle size, and decreasing ionic strength of suspensions.

Keywords

Particle Concentration Correlation Length Debye Length Particle Volume Fraction Oscillatory Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bechinger, C., Rudhardt, D., Leiderer, P., Roth, R., & Dietrich, S. (1999). Physical Review Letters, 83, 3960–3963.ADSCrossRefGoogle Scholar
  2. 2.
    Chaudhury, M. (2003). Nature, 423, 131–132.ADSCrossRefGoogle Scholar
  3. 3.
    Wasan, D., & Nikolov, A. (2003). Nature, 423, 156–159.ADSCrossRefGoogle Scholar
  4. 4.
    Israelachvili, J., & Pashley, R. (1983). Nature, 306, 249–250.ADSCrossRefGoogle Scholar
  5. 5.
    Wasan, D., Nikolov, A., Kralchevsky, P., & Ivanov, I. (1992). Colloids and Surface, 67, 139–145.CrossRefGoogle Scholar
  6. 6.
    von Klitzing, R., & Muller, H. (2002). Current Opinion in Colloid and Interface Science, 7, 42–49.CrossRefGoogle Scholar
  7. 7.
    Kegler, K., Salomo, M., & Kremer, F. (2007). Physical Review Letters, 98, 058304.ADSCrossRefGoogle Scholar
  8. 8.
    Stubenrauch, C., & von Klitzing, R. (2003). Journal of Physics Condensed Matter, 15, R1197–R1232.Google Scholar
  9. 9.
    von Klitzing, R. (2005). Advances in Colloid and Interface Science, 114, 253–266.CrossRefGoogle Scholar
  10. 10.
    Ducker, W., Senden, T., & Pashley, R. (1991). Nature, 353, 239–241.ADSCrossRefGoogle Scholar
  11. 11.
    Nikolov, A., & Wasan, D. (1989). Journal of Colloid Interface Science, 133, 1–12.Google Scholar
  12. 12.
    Basheva, E., Danov, K., & Kralchevsky, P. (1997). Langmuir, 13, 4342–4348.CrossRefGoogle Scholar
  13. 13.
    Sethumadhavan, G., Nikolov, A., & Wasan, D. (2001). Journal of Colloid Interface Science, 240, 105–112.Google Scholar
  14. 14.
    Denkov, N., Yoshimura, H., Nagayama, K., & Kouyama, T. (1996). Physical Review Letters, 76, 2354–2357.ADSCrossRefGoogle Scholar
  15. 15.
    Sharma, A., & Walz, J. (1996). Journal of the Chemical Society Faraday Transactions, 92, 4997–5004.CrossRefGoogle Scholar
  16. 16.
    Sharma, A., Tan, S., & Walz, J. (1997). Journal of Colloid Interface Science, 191, 236–246.Google Scholar
  17. 17.
    Piech, M., & Walz, J. (2002). Journal of Colloid Interface Science, 253, 117–129.Google Scholar
  18. 18.
    Piech, M., & Walz, J. (2004). Journal of Physical Chemistry B, 108, 9177–9188.Google Scholar
  19. 19.
    McNamee, C., Tsujii, Y., Ohshima, H., & Matsumoto, M. (2004). Langmuir, 20, 1953–1962.CrossRefGoogle Scholar
  20. 20.
    Tulpar, A., Van Tassel, P., & Walz, J. (2006). Langmuir, 22, 2876–2883.CrossRefGoogle Scholar
  21. 21.
    Drelich, J., Long, J., Xu, Z., Masliyah, J., Nalaskowski, J., Beauchamp, R., et al. (2006). Journal of Colloid Interface Science, 301, 511–522.CrossRefGoogle Scholar
  22. 22.
    McNamee, C., Tsujii, Y., & Matsumoto, M. (2004). Langmuir, 20, 1791–1798.CrossRefGoogle Scholar
  23. 23.
    Milling, A. (1996). Journal of Physical Chemistry, 100, 8986–8993.Google Scholar
  24. 24.
    Biggs, S., Burns, J., Yan, Y., Jameson, G., & Jenkins, P. (2000). Langmuir, 16, 9242–9248.CrossRefGoogle Scholar
  25. 25.
    Biggs, S., Prieve, D., & Dagastine, R. (2005). Langmuir, 21, 5421–5428.CrossRefGoogle Scholar
  26. 26.
    Qu, D., Baigl, D., Williams, C., Mohwald, H., & Fery, A. (2003). Macromolecules, 36, 6878–6883.ADSCrossRefGoogle Scholar
  27. 27.
    Qu, D., Pedersen, J. S., Garnier, S., Laschewsky, A., Moehwald, H., & von Klitzing, R. (2006). Macromolecules, 39, 7364–7371.ADSCrossRefGoogle Scholar
  28. 28.
    Evans, R., Henderson, J., Hoyle, D., Parry, A., & Sabeur, Z. (1993). Molecular Physics, 80, 755–775.ADSCrossRefGoogle Scholar
  29. 29.
    Grodon, C., Dijkstra, M., Evans, R., & Roth, R. (2005). Molecular Physics, 103, 3009–3023.ADSCrossRefGoogle Scholar
  30. 30.
    Klapp, S. H. L., Grandner, S., Zeng, Y., & von Klitzing, R. (2008). Journal of Physics Condensed Matter, 20, 494232.Google Scholar
  31. 31.
    Kolaric, B., Jaeger, W., & von Klitzing, R. (2000). Journal of Physical Chemistry B, 104, 5096–5101.Google Scholar
  32. 32.
    Klapp, S. H. L., Grandner, S., Zeng, Y., & von Klitzing, R. (2010). Soft Matter, 6, 2330–2336.ADSCrossRefGoogle Scholar
  33. 33.
    Nikolov, A., & Wasan, D. (1992). Langmuir, 8, 2985–2994.CrossRefGoogle Scholar
  34. 34.
    Klapp, S. H. L., Zeng, Y., Qu, D., & von Klitzing, R. (2008). Physical Review Letters, 100, 118303.ADSCrossRefGoogle Scholar
  35. 35.
    Sokolov, I., Ong, Q. K., Shodiev, H., Chechik, N., James, D., & Oliver, M. (2006). Journal of Colloid and Interface Science, 300, 475–481.Google Scholar
  36. 36.
    Hansen, I. R., & McDonald, J. P. (2006). Theory of simple liquids (3rd ed.). Amsterdam: Academic Press.Google Scholar
  37. 37.
    Chu, X., Nikolov, A., & Wasan, D. (1994). Langmuir, 10, 4403–4408.CrossRefGoogle Scholar
  38. 38.
    Wasan, D., Nikolov, A., & Moudgil, B. (2005). Powder Technology, 153, 135–141.CrossRefGoogle Scholar
  39. 39.
    Grandner, S., & Klapp, S. H. L. (2008). Journal of Chemical Physics, 129, 244703.Google Scholar
  40. 40.
    Netz, R. (2000). European Physical Journal E, 3, 131–141.ADSCrossRefGoogle Scholar
  41. 41.
    Netz, R. (2001). European Physical Journal E, 5, 557–574.ADSCrossRefGoogle Scholar
  42. 42.
    Frydel, D., Dietrich, S., & Oettel, M. (2007). Physical Review Letters, 99, 118302.ADSCrossRefGoogle Scholar
  43. 43.
    Zwanenburg, M., Bongaerts, J., Peters, J., Riese, D., & van der Veen, J. (2000). Physical Review Letters, 85, 5154–5157.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations