Advertisement

Experimental Section

  • Yan ZengEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This section describes the preparation and characterization of investigated systems. The preparation part involves solely colloidal suspensions, mixture of nanoparticles and surfactants, micelle solutions, polyelectrolytes solutions, and the substrate cleaning process and modification. Zeta potential, contact angle, surface tension, surface topography and surface thickness are characterized via relevant techniques. The structuring of colloidal suspensions in confinement and in bulk are determined by colloidal-probe atomic force microscopy and small angle X-ray scattering, respectively. The detailed experimental procedures and data-analyzing methods are presented as well.

Keywords

Atomic Force Microscopy Contact Angle Zeta Potential Silicon Wafer Silica Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Decher, G. (1997). Science, 277, 1232–1237.CrossRefGoogle Scholar
  2. 2.
    Sukhorukov, G., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V., et al. (1998). Polymers for Advanced Technologies, 9, 759–767.CrossRefGoogle Scholar
  3. 3.
    Binning, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Physical Review Letters, 49, 57–61.ADSCrossRefGoogle Scholar
  4. 4.
    Ducker, W., Senden, T., & Pashley, R. (1991). Nature, 353, 239–241.ADSCrossRefGoogle Scholar
  5. 5.
    Butt, H. (1991). Biophysical Journal, 60, 1438–1444.ADSCrossRefGoogle Scholar
  6. 6.
    Ducker, W., Senden, T., & Pashley, R. (1992). Langmuir, 8, 1831–1836.CrossRefGoogle Scholar
  7. 7.
    Hutter, J., & Bechhoefer, J. (1993). Review of Scientific Instruments, 64, 1868–1873.ADSCrossRefGoogle Scholar
  8. 8.
    Dagastine, R., Stevens, G., Chan, D., & Grieser, F. (2004). Journal of Colloid and Interface Science, 273, 339–342.Google Scholar
  9. 9.
    Hoh, J., & Engel, A. (1993). Langmuir, 9, 3310–3312.CrossRefGoogle Scholar
  10. 10.
    Fielden, M., Hayes, R., & Ralston, J. (1996). Langmuir, 12, 3721–3727.CrossRefGoogle Scholar
  11. 11.
    Butt, H., Cappella, B., & Kappl, M. (2005). Surface Science Reports, 59, 1–152.ADSCrossRefGoogle Scholar
  12. 12.
    Attard, P., & Miklavcic, S. (2001). Langmuir, 17, 8217–8223.CrossRefGoogle Scholar
  13. 13.
    Attard, P., & Miklavcic, S. (2003). Langmuir, 19, 2532.CrossRefGoogle Scholar
  14. 14.
    Epstein, P., & Plesset, M. (1950). Journal of Chemical Physics, 18, 1505–1509.ADSCrossRefGoogle Scholar
  15. 15.
    Binks, B. (2002). Current Opinion in Colloid and Interface Science, 7, 21–41.CrossRefGoogle Scholar
  16. 16.
    Helm, C., Moehwald, H., Kjaer, K., & Alsnielsen, J. (1987). Europhysics Letters, 4, 697–703.ADSCrossRefGoogle Scholar
  17. 17.
    Spaar, A., & Salditt, T. (2003). Biophysical Journal, 85, 1576–1584.ADSCrossRefGoogle Scholar
  18. 18.
    Noüy, L. J. D. (1919). Journal of General Physiology, 1, 521.CrossRefGoogle Scholar
  19. 19.
    Schwuger, M. J. (1996). Lehrbuch der Grenzflächenchemie. Stuttgart, Germany: Georg Thieme Velag.Google Scholar
  20. 20.
    Young, T. (1805). Philosophical Transactions of the Royal Society of London, 95, 65.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations