Advertisement

Scientific Background

  • Yan ZengEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

A colloidal system consists of two separate phases: a dispersed phase (or internal phase) and a continuous phase (or dispersion medium). The dispersed phase and the continuous medium can be in gas, liquid, and solid states. The dispersed-phase has a diameter of between approximately 1 and 1000 nm. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal suspensions, or hydrosols depending on varying combinations of dispersed phase and continuous phase.

Keywords

Monte Carlo Surface Charge Density Decay Length Structural Force Hydrophobic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of stability of lyophobic colloids. Amsterdam: ELSEVIER.Google Scholar
  2. 2.
    Derjaguin, B. V., & Landau, L. (1941). Acta Physicochim URSS, 14, 633.Google Scholar
  3. 3.
    Hamaker, H. C. (1937). Physica, 4, 1058–72.ADSCrossRefGoogle Scholar
  4. 4.
    Lifshitz, E. M. (1956). Soviet Physics JETP USSR, 2, 73–83.Google Scholar
  5. 5.
    Israelachvili, J. N. (1992). Intermolecular and surface forces. London: Academic Press.Google Scholar
  6. 6.
    Russel, W., Saville, D., & Schowalter, W. (1989). Colloidal dispersions. Cambridge, UK: Cambridge University Press.Google Scholar
  7. 7.
    Hutter, R. J. (2002). Foundations of colloid science. Oxford: Oxford University Press.Google Scholar
  8. 8.
    Derjaguin, B. V. (1934). Kolloid Z, 69, 155–64.CrossRefGoogle Scholar
  9. 9.
    Asakura, S., & Oosawa, F. (1954). Journal of Chemical Physics, 22, 1255–1256.ADSGoogle Scholar
  10. 10.
    Asakura, S., & Oosawa, F. (1958). Journal of Polymer Science, 33, 183–192.ADSCrossRefGoogle Scholar
  11. 11.
    Israelachvili, J., & Pashley, R. (1982). Nature, 300, 341–342.ADSCrossRefGoogle Scholar
  12. 12.
    Israelachvili, J., & Pashley, R. (1984). Journal of Colloid and Interface Science, 98, 500–514.Google Scholar
  13. 13.
    Rabinovich, Y., & Derjaguin, B. (1988). Colloids and Surfaces, 30, 243–251.Google Scholar
  14. 14.
    Claesson, P., & Christenson, H. (1988). Journal of Physics and Chemistry, 92, 1650–1655.CrossRefGoogle Scholar
  15. 15.
    Attard, P., & Parker, J. (1992). Journal of Physics and Chemistry, 96, 5086–5093.CrossRefGoogle Scholar
  16. 16.
    Blawzdziewicz, J., & Wajnryb, E. (2005). Europhysics Letters, 71, 269–275.ADSCrossRefGoogle Scholar
  17. 17.
    Trokhynichuk, A., Henderson, D., Nikolov, A., & Wasan, D. (2005). Langmuir, 21, 10240–10250.CrossRefGoogle Scholar
  18. 18.
    Schoen, M., & Klapp, S. H. L. (2007). Nanoconfined fluids. Soft matter between two and three dimensions. New York: Wiley.Google Scholar
  19. 19.
    Evans, R., Henderson, J., Hoyle, D., Parry, A., & Sabeur, Z. (1993). Molecular Physics, 80, 755–775.ADSCrossRefGoogle Scholar
  20. 20.
    Grodon, C., Dijkstra, M., Evans, R., & Roth, R. (2005). Molecular Physics, 103, 3009–3023.ADSCrossRefGoogle Scholar
  21. 21.
    Gotzelmann, B., Evans, R., & Dietrich, S. (1998). Physical Review E, 57, 6785–6800.ADSCrossRefGoogle Scholar
  22. 22.
    Trokhymchuk, A., Henderson, D., Nikolov, A., & Wasan, D. (2001). Langmuir, 17, 4940–4947.CrossRefGoogle Scholar
  23. 23.
    Klapp, S., & Schoen, M. (2002). Journal of Chemical Physics, 117, 8050–8062.ADSCrossRefGoogle Scholar
  24. 24.
    Schoen, M., Gruhn, T., & Diestler, D. (1998). Journal of Chemical Physics, 109, 301–311.ADSCrossRefGoogle Scholar
  25. 25.
    Jonsson, B., Broukhno, A., Forsman, J., & Akesson, T. (2003). Langmuir, 19, 9914–9922.CrossRefGoogle Scholar
  26. 26.
    Kralchevsky, P., & Denkov, N. (1995). Chemical Physics Letters, 240, 385–392.ADSCrossRefGoogle Scholar
  27. 27.
    Basheva, E. S., Kralchevsky, P. A., Danov, K. D., Ananthapadmanabhan, K. P., & Lips, A. (2007). Physical Chemistry Chemical Physics, 9, 5183–5198.CrossRefGoogle Scholar
  28. 28.
    Klapp, S. H. L., Qu, D., & von Klitzing, R. J. (2007). Journal of Physical Chemistry B, 111, 1296–1303.CrossRefGoogle Scholar
  29. 29.
    Klapp, S. H. L., Grandner, S., Zeng, Y., & von Klitzing, R. (2008). Journal of Physics: Condensed Matter, 20, 494232.CrossRefGoogle Scholar
  30. 30.
    Klapp, S. H. L., Zeng, Y., Qu, D., & von Klitzing, R. (2008). Physical Review Letters, 100, 118303.ADSCrossRefGoogle Scholar
  31. 31.
    Grandner, S., Zeng, Y., von Klitzing, R., & Klapp, S. H. L. (2009). Journal of Chemical Physics, 131, 154702.ADSCrossRefGoogle Scholar
  32. 32.
    Ornstein, L., & Zernike, F. (1914). Proceedings of the Academy of Sciences Amsterdam, 17, 793.Google Scholar
  33. 33.
    Hansen, I. R., & McDonald, J. P. (2006). Theory of simple liquids (3rd ed.). Amsterdam: Academic Press.Google Scholar
  34. 34.
    Hopkins, P., Archer, A., & Evans, R. (2005). Physical Review E, 71, 027401.ADSCrossRefGoogle Scholar
  35. 35.
    Schoen, M., Klapp, S. H. L (2007). Reviews in computational chemsitry (Vol. 24). New Jersey: WILEY-VCH.Google Scholar
  36. 36.
    Carnahan, N., & Starling, K. (1969). Journal of Chemical Physics, 51, 635.ADSCrossRefGoogle Scholar
  37. 37.
    Reiss, H., Frisch, H., Helfand, E., & Lebowitz, J. (1960). Journal of Chemical Physics, 32, 119–124.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations