Advertisement

Introduction

  • Yan ZengEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Colloidal suspensions are solutions containing small particles. These particles are larger than the molecules of the medium. They have a typical size ranging from several 10 nanometers to micrometers. They can be made from different materials and suspended in a wide variety of solvents. Colloidal dispersions have large application in our daily life, for instance, as cosmetics, advanced ceramics [1,2], coating [3], paints, and inks [4, 5]. Also, thin films of colloidal dispersions are confined to a solid substrate to manufacture advanced self-assembled materials such as photonic crystals [6–10], and sensors [11–12]. In addition, special colloids have biological applications, e.g. as pharmaceuticals, in drug delivery [13], and in food processing.

Keywords

Photonic Crystal Silica Nanoparticles Colloidal Particle Colloidal Suspension Colloidal Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lewis, J. (2000). Journal of the American Ceramic Society, 83, 2341–2359.CrossRefGoogle Scholar
  2. 2.
    Tohver, V., Smay, J., Braem, A., Braun, P., & Lewis, J. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 8950–8954.ADSCrossRefGoogle Scholar
  3. 3.
    Agarwal, N., & Farris, R. (2000). Polymer Engineering and Science, 40, 376–390.CrossRefGoogle Scholar
  4. 4.
    Chrisey, D. (2000). Science, 289, 879.CrossRefGoogle Scholar
  5. 5.
    Smay, J., Cesarano, J., & Lewis, J. (2002). Langmuir, 18, 5429–5437.CrossRefGoogle Scholar
  6. 6.
    Yablonovitcah, E. (1987). Physical Review Letters, 58, 2059–2062.ADSCrossRefGoogle Scholar
  7. 7.
    Joannopoulos, J., Villeneuve, P., & Fan, S. (1997). Nature, 386, 143–149.ADSCrossRefGoogle Scholar
  8. 8.
    Pan, G., Kesavamoorthy, R., & Asher, S. (1997). Physical Review Letters, 78, 3860–3863.ADSCrossRefGoogle Scholar
  9. 9.
    Braun, P., & Wiltzius, P. (1999). Nature, 402, 603–604.ADSCrossRefGoogle Scholar
  10. 10.
    Johnson, S., Ollivier, P., & Mallouk, T. (1999). Science, 283, 963–965.ADSCrossRefGoogle Scholar
  11. 11.
    Tressler, J., Alkoy, S., Dogan, A., & Newnham, R. (1999). Composites Part A, 30, 477–482.CrossRefGoogle Scholar
  12. 12.
    Allahverdi, M., Danforth, S., Jafari, M., & Safari, A. (2001). Journal of the European Ceramic Society, 21, 1485–1490.CrossRefGoogle Scholar
  13. 13.
    Garnett, M. C., Stolnick, S., Dunn, S. E., Armstrong, I., Ling, W., Schacht, E., et al. (1999). Materials Research Society Bulletin, 24, 49–56.Google Scholar
  14. 14.
    Nikolov, A., & Wasan, D. (1989). Journal of Colloid and Interface Science, 133, 1–12.CrossRefGoogle Scholar
  15. 15.
    Wasan, D., & Nikolov, A. (2003). Nature, 423, 156–159.ADSCrossRefGoogle Scholar
  16. 16.
    Basheva, E., Danov, K., & Kralchevsky, P. (1997). Langmuir, 13, 4342–4348.CrossRefGoogle Scholar
  17. 17.
    Sethumadhavan, G., Nikolov, A., & Wasan, D. (2001). Journal of Colloid and Interface Science, 240, 105–112.CrossRefGoogle Scholar
  18. 18.
    Denkov, N., Yoshimura, H., Nagayama, K., & Kouyama, T. (1996). Physical Review Letters, 76, 2354–2357.ADSCrossRefGoogle Scholar
  19. 19.
    Sharma, A., & Walz, J. (1996). Journal of the Chemical Society, Faraday Transactions, 92, 4997–5004.CrossRefGoogle Scholar
  20. 20.
    Sharma, A., Tan, S., & Walz, J. (1997). Journal of Colloid and Interface Science, 191, 236–246.CrossRefGoogle Scholar
  21. 21.
    Piech, M., & Walz, J. (2002). Journal of Colloid and Interface Science, 253, 117–129.CrossRefGoogle Scholar
  22. 22.
    Piech, M., & Walz, J. (2004). Journal of Physical Chemistry B, 108, 9177–9188.CrossRefGoogle Scholar
  23. 23.
    McNamee, C., Tsujii, Y., Ohshima, H., & Matsumoto, M. (2004). Langmuir, 20, 1953–1962.CrossRefGoogle Scholar
  24. 24.
    Tulpar, A., Van Tassel, P., & Walz, J. (2006). Langmuir, 22, 2876–2883.CrossRefGoogle Scholar
  25. 25.
    Drelich, J., Long, J., Xu, Z., Masliyah, J., Nalaskowski, J., Beauchamp, R., et al. (2006). Journal of Colloid and Interface Science, 301, 511–522.CrossRefGoogle Scholar
  26. 26.
    Bergeron, V., & Radke, C. (1992). Langmuir, 8, 3020–3026.CrossRefGoogle Scholar
  27. 27.
    Bergeron, V., Jimenezlaguna, A., & Radke, C. (1992). Langmuir, 8, 3027–3032.CrossRefGoogle Scholar
  28. 28.
    Richetti, P., & Kekicheff, P. (1992). Physical Review Letters, 68, 1951–1954.ADSCrossRefGoogle Scholar
  29. 29.
    Parker, J., Richetti, P., Kekicheff, P., & Sarman, S. (1992). Physical Review Letters, 68, 1955–1958.ADSCrossRefGoogle Scholar
  30. 30.
    McNamee, C., Tsujii, Y., & Matsumoto, M. (2004). Langmuir, 20, 1791–1798.CrossRefGoogle Scholar
  31. 31.
    Nikolov, A., Kralchevsky, P., Ivanov, I., & Wasan, D. (1989). Journal of Colloid and Interface Science, 133, 13–22.CrossRefGoogle Scholar
  32. 32.
    Ducker, W., Senden, T., & Pashley, R. (1991). Nature, 353, 239–241.ADSCrossRefGoogle Scholar
  33. 33.
    Butt, H. (1991). Biophysical Journal, 60, 1438–1444.ADSCrossRefGoogle Scholar
  34. 34.
    Milling, A. (1996). Journal of Physical Chemistry, 100, 8986–8993.CrossRefGoogle Scholar
  35. 35.
    Biggs, S., Burns, J., Yan, Y., Jameson, G., & Jenkins, P. (2000). Langmuir, 16, 9242–9248.CrossRefGoogle Scholar
  36. 36.
    Biggs, S., Prieve, D., & Dagastine, R. (2005). Langmuir, 21, 5421–5428.CrossRefGoogle Scholar
  37. 37.
    Qu, D., Baigl, D., Williams, C., Mohwald, H., & Fery, A. (2003). Macromolecules, 36, 6878–6883.ADSCrossRefGoogle Scholar
  38. 38.
    Qu, D., Pedersen, J. S., Garnier, S., Laschewsky, A., Moehwald, H., & von Klitzing, R. (2006). Macromolecules, 39, 7364–7371.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations