Advertisement

Analysis of Differential Attacks in ARX Constructions

  • Gaëtan Leurent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7658)

Abstract

In this paper, we study differential attacks against ARX schemes. We build upon the generalized characteristics of de Cannière and Rechberger; we introduce new multi-bit constraints to describe differential characteristics in ARX designs more accurately, and quartet constraints to analyze boomerang attacks. We also describe how to propagate those constraints; this can be used either to assist manual construction of a differential characteristic, or to extract more information from an already built characteristic. We show that our new constraints are more precise than what was used in previous works, and can detect more cases of incompatibility.

In particular, we show that several published attacks are in fact fact invalid because the differential characteristics cannot be satisfied. This highlights the importance of verifying differential attacks more thoroughly.

Keywords

Symmetric ciphers Hash functions ARX Generalized characteristics Differential attacks Boomerang attacks 

References

  1. 1.
    Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 542–559. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Differential Collisions for Reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Chen, J., Jia, K.: Improved Related-Key Boomerang Attacks on Round-Reduced Threefish-512. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Grechnikov, E.A.: Collisions for 72-step and 73-step sha-1: Improvements in the method of characteristics. Cryptology ePrint Archive, Report 2010/413 (2010), http://eprint.iacr.org/
  8. 8.
    Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in MD4. ECRYPT Hash Worshop – Cryptology ePrint Archive, Report 2007/206 (2007), http://eprint.iacr.org/
  9. 9.
    Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Leurent, G., Roy, A.: Boomerang Attacks on Hash Function Using Auxiliary Differentials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Leurent, G., Thomsen, S.S.: Practical Near-Collisions on the Compression Function of BMW. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 238–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Manuel, S.: Classification and generation of disturbance vectors for collision attacks against SHA-1. Des. Codes Cryptography 59(1-3), 247–263 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Mendel, F., Rechberger, C., Schläffer, M.: MD5 Is Weaker Than Weak: Attacks on Concatenated Combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 144–161. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Mouha, N., De Cannière, C., Indesteege, S., Preneel, B.: Finding Collisions for a 45-Step Simplified HAS-V. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 206–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 36–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Murphy, S.: The Return of the Cryptographic Boomerang. IEEE Transactions on Information Theory 57(4), 2517–2521 (2011)CrossRefGoogle Scholar
  21. 21.
    Peyrin, T.: Analyse de fonctions de hachage cryptographiques. PhD thesis, University of Versailles (2008)Google Scholar
  22. 22.
    Sasaki, Y.: Boomerang Distinguishers on MD4-Family: First Practical Results on Full 5-Pass HAVAL. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242–261. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, G., Keller, N., Dunkelman, O.: The Delicate Issues of Addition with Respect to XOR Differences. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 212–231. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Yu, H., Chen, J., Ketingjia, W.X.: Near-Collision Attack on the Step-Reduced Compression Function of Skein-256. Cryptology ePrint Archive, Report 2011/148 (2011), http://eprint.iacr.org/ (last revised March 31, 2011)
  30. 30.
    Yu, H., Chen, J., Wang, X.: The Boomerang Attacks on the Round-Reduced Skein-512. In: SAC (2012)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Gaëtan Leurent
    • 1
  1. 1.LACSUniversity of LuxembourgLuxembourg

Personalised recommendations