The Generalized Randomized Iterate and Its Application to New Efficient Constructions of UOWHFs from Regular One-Way Functions

  • Scott Ames
  • Rosario Gennaro
  • Muthuramakrishnan Venkitasubramaniam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7658)


This paper presents the Generalized Randomized Iterate of a (regular) one-way function f and show that it can be used to build Universal One-Way Hash Function (UOWHF) families with O(n 2) key length.

We then show that Shoup’s technique for UOWHF domain extension can be used to improve the efficiency of the previous construction. We present the Reusable Generalized Randomized Iterate which consists of k ≥ n + 1 iterations of a regular one-way function composed at each iteration with a pairwise independent hash function, where we only use logk such hash functions, and we “schedule” them according to the same scheduling of Shoup’s domain extension technique. The end result is a UOWHF construction from regular one-way functions with an O(n logn) key. These are the first such efficient constructions of UOWHF from regular one-way functions of unknown regularity.

Finally we show that the Shoup’s domain extension technique can also be used in lieu of derandomization techniques to improve the efficiency of PRGs and of hardness amplification constructions for regular one-way functions.


Hash Function Success Probability Random Input Pseudorandom Generator Randomization Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. SIAM Journal of Computing, 112–117 (1982)Google Scholar
  2. 2.
    De Santis, A., Yung, M.: On the Design of Provably-Secure Cryptographic Hash Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 412–431. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Gennaro, R., Trevisan, L.: Lower Bounds on the Efficiency of Generic Cryptographic Constructions. In: FOCS 2000, pp. 305–313 (2000)Google Scholar
  4. 4.
    Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom generators. SIAM Journal of Computing 22(6), 1163–1175 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC 1989, pp. 25–32 (1989)Google Scholar
  6. 6.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17, 281–308 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Haitner, I., Harnik, D., Reingold, O.: On the Power of the Randomized Iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Haitner, I., Holenstein, T., Reingold, O., Vadhan, S., Wee, H.: Universal One-Way Hash Functions via Inaccessible Entropy. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 616–637. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Haitner, I., Reingold, O., Vadhan, S., Wee, H.: Inaccessible Entropy. In: STOC 2009, pp. 611–620 (2009)Google Scholar
  10. 10.
    Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal of Computing 28(4), 1364–1396 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: STOC 1989, pp. 33–43 (1989)Google Scholar
  13. 13.
    Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures. In: STOC 1990, pp. 387–394 (1990)Google Scholar
  14. 14.
    Sarkar, P.: Masking-based domain extenders for UOWHFs: bounds and constructions. IEEE Transactions on Information Theory 51(12), 4299–4311 (2005)CrossRefGoogle Scholar
  15. 15.
    Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Yao, A.: Theory and applications of trapdoor functions. In: FOCS, pp. 80–91 (1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Scott Ames
    • 1
  • Rosario Gennaro
    • 2
  • Muthuramakrishnan Venkitasubramaniam
    • 1
  1. 1.University of RochesterRochesterUSA
  2. 2.IBM T.J.Watson Research CenterHawthoreUSA

Personalised recommendations