Magnetic and Magnetoresistive Properties of Thin Films Patterned by Self-Assembling Polystyrene Nanospheres

  • Marco CoïssonEmail author
  • Federica Celegato
  • Paola Tiberto
  • Franco Vinai
  • Luca Boarino
  • Natascia De Leo
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 175)


Self-assembling of polystyrene nanospheres (PNs) is a powerful technique for preparing large area (several mm2) nanostructured thin films. Compared to conventional lithographic techniques (e.g. EBL), which have more resolution and are more versatile, but are limited to very small surface areas, self-assembling PN allows preparation of large nanostructured samples. This technique limits the shaping to only circular dot and antidot geometries which can be obtained in the hexagonal close-packed configuration.

In this paper, the self-assembling PN preparation technique will be thoroughly discussed, and the magnetic and magnetoresistive properties of dot and antidot arrays of Ni80Fe20, Ni, Co and Fe-based amorphous alloys will be investigated. All dot and antidot arrays have been obtained from monolayers of PN on Si substrates. The initial diameter of the spheres is 500 nm, and is reduced to 250–400 nm by reactive ion etching. The typical thickness of the magnetic material is approximately 10–30 nm for antidot samples, and in the 30–80 nm range for dot samples.

Both dot and antidot systems have been studied by means of scanning electron microscopy, atomic force and magnetic force microscopy, and alternating gradient field magnetometry, to record hysteresis loops. On antidot samples, magnetoresistance measurements have been carried out in the 5–300 K temperature range. The expected anisotropic magnetoresistance effect is observed, superimposed to a giant magnetoresistance effect on some systems. Co antidots also display an exchange bias effect below approximately 150 K, as evidenced by both magnetoresistance and low temperature hysteresis loop measurements. On dot samples, a typical vortex structure is observed, which depends on the material thickness and mean dot size. Preliminary magnetoresistance measurements on dot samples are also presented.


Electron Beam Lithography Magnetic Force Microscopy Domain Configuration Magnetic Force Microscopy Image Magnetoresistance Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially performed at NanoFacility Piemonte, INRIM, a laboratory supported by Compagnia di San Paolo.


  1. 1.
    H.S. Nalwa, Magnetic Nanostructures (American Scientific, Stevenson Ranch, 2002) Google Scholar
  2. 2.
    P.P. Freitas, R. Ferreira, S. Cardoso, F. Cardoso, J. Phys. Condens. Matter 19, 165221 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    M. Donolato, M. Gobbi, P. Vavassori, M. Leone, M. Cantoni, V. Metlushko, B. Ilic, M. Zhang, S.X. Wang, R. Bertacco, Nanotechnology 20, 385501 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    P. Vavassori, M. Gobbi, M. Donolato, M. Cantoni, R. Bertacco, V. Metlushko, B. Ilic, J. Appl. Phys. 107, 09B301 (2010) CrossRefGoogle Scholar
  5. 5.
    C. Granata, A. Vettoliere, P. Walke, C. Nappi, M. Russo, J. Appl. Phys. 106, 023925 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Allwood, G. Xiong, R.P. Cowburn, J. Appl. Phys. 100, 123908 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    J. Jaworowicz, N. Vernier, J. Ferre, A. Maziewski, D. Stanescu, D. Ravelosona, A.S. Jacqueline, C. Chappert, B. Rodmacq, B. Dieny, Nanotechnology 20, 215401 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    T. Hesjedal, T. Phung, Appl. Phys. Lett. 96, 072501 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    G. Reiss, D. Meyners, J. Phys. Condens. Matter 19, 165220 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    R. Jansen, J. Phys. D, Appl. Phys. 36, R289 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    J.-U. Bae, T.-Y. Lin, J.L. Reno, J.P. Bird, Appl. Phys. Lett. 93, 143109 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Lee, S.N. Holmes, B. Hong, P.E. Roy, M.D. Mascaro, T.J. Hayward, D. Anderson, K. Cooper, G.A.C. Jones, M.E. Vickers, C.A. Ross, C.H.W. Barnes, Appl. Phys. Lett. 95, 172505 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    A. Bisig, L. Heyne, O. Boulle, M. Kläui, Appl. Phys. Lett. 95, 162504 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    M.R. Pufall, W.H. Rippard, S.E. Russek, S. Kada, J.A. Katine, Phys. Rev. Lett. 97, 087206 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190–194 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    A.O. Adeyeye, N. Singh, J. Phys. D, Appl. Phys. 41, 153001 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    J.-S. Sohn, D. Lee, E. Cho, H.-S. Kim, B.-K. Lee, M.-B. Lee, S.-J. Suh, Nanotechnology 20, 025302 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    K. Galatsis, K.L. Wang, M. Ozkan, C.S. Ozkan, Y. Huang, J.P. Chang, H.G. Monbouquette, Y. Chen, P. Nealey, Y. Botros, Adv. Mater. 21 (2009) Google Scholar
  19. 19.
    A. Aktag, S. Michalski, L.P. Yue, R.D. Kirby, S.H. Liou, J. Appl. Phys. 99, 093901 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    D. Kitamoto, T. Morita, T. Fukuoka, M. Konishi, T. Imura, in Self-assembling Properties of Glycolipid Biosurfactants and Their Potential Applications. Curr. Opin. in Colloid and Interface Science, vol. 14 (2009). doi: 10.1016/j.cocis.2009.05.009 Google Scholar
  21. 21.
    Z.L. Xiao, C.Y. Han, U. Welp, H.H. Wang, V.K. Vlasko-Vlasov, W.K. Kwok, D.J. Mille, J.M. Hiller, R.E. Cook, G.A. Willing, G.W. Crabtree, Appl. Phys. Lett. 81, 2869 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    S.B. Darling, Prog. Polym. Sci. 32, 1152 (2007) CrossRefGoogle Scholar
  23. 23.
    Y. Sun, G.C. Walker, J. Phys. Chem. B 106, 2217 (2002) CrossRefGoogle Scholar
  24. 24.
    H. Shibata, M. Sato, S. Watanabe, M. Matsumoto, Colloids Surf. A, Physicochem. Eng. Asp. 346, 58 (2009) CrossRefGoogle Scholar
  25. 25.
    J.C. Hulteen, R.P. Val Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Zhukov, A.V. Goncharov, P.A.J. de Groot, P.N. Bartlett, M.A. Granem, J. Appl. Phys. 93, 7322 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    C. Hassel, M. Brands, F.Y. Lo, A.D. Wieck, G. Dumpich, Phys. Rev. Lett. 97, 226805 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    R. Danneau, P. Warin, J.P. Attané, I. Petej, C. Beigné, C. Fermon, O. Klein, A. Marty, F. Ott, Y. Samson, M. Viret, Phys. Rev. Lett. 88, 157201 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    H.W. Deckman, J.H. Dunsmir, Appl. Phys. Lett. 41, 377 (1982) ADSCrossRefGoogle Scholar
  30. 30.
    A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Small 1, 439 (2005) CrossRefGoogle Scholar
  31. 31.
  32. 32.
    L. Boarino, G. Amato, E. Enrico, N. De Leo, F. Celegato, P. Tiberto, F. Vinai, M. Coïsson, A. Chiodoni, M. Laus, in Silicon Nanostructures by Self-assembly and Metal Assisted Etching, ed. by P. Granitzer, K. Rumpf. Nanostructured Semiconductors: From Basic Research to Applications (Pan Stanford, New York, 2011) Google Scholar
  33. 33.
    T. Eimuller, T.C. Ulbrich, E. Amaladass, I.L. Guhr, T. Tyliszczak, M. Albrecht, Phys. Rev. B 77, 134415 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    C.M. Günther, O. Hellwig, A. Menzel, B. Pfau, F. Radu, D. Makarov, M. Albrecht, A. Goncharov, T. Schrefl, W.F. Schlotter, R. Rick, J. Lüning, S. Eisebitt, Phys. Rev. B 81, 064411 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    T.C. Ulbrich, D. Assmann, M. Albrecht, J. Appl. Phys. 104, 084311 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    C.C. Wang, A.O. Adeyeye, Y.H. Wu, M.B.A. Jalili, J. Appl. Phys. 97, 023531 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    B. Raquet, M. Viret, P. Warin, E. Sondergard, R. Mamy, Physica B 294–295, 102 (2001) CrossRefGoogle Scholar
  38. 38.
    P. Tiberto, L. Boarino, F. Celegato, M. Coïsson, N. De Leo, F. Vinai, P. Allia, J. Appl. Phys. 107, 09B502 (2010) CrossRefGoogle Scholar
  39. 39.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102(5), 1413 (1956) ADSCrossRefGoogle Scholar
  40. 40.
    M. Coïsson, L. Boarino, F. Celegato, N. De Leo, P. Tiberto, F. Vinai, J. Nanopart. Res. 13, 5641–5651 (2009) CrossRefGoogle Scholar
  41. 41.
    P. Tiberto, L. Boarino, F. Celegato, M. Coisson, E. Enrico, N. De Leo, F. Vinai, P. Allia, J. Nanopart. Res. 13, 4211–4218 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Coïsson
    • 1
    Email author
  • Federica Celegato
    • 1
  • Paola Tiberto
    • 1
  • Franco Vinai
    • 1
  • Luca Boarino
    • 1
  • Natascia De Leo
    • 1
  1. 1.Electromagnetics DivisionINRIMTorinoItaly

Personalised recommendations