Characterization of Antiferromagnetic/Ferromagnetic Perovskite Oxide Superlattices

  • Y. TakamuraEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 175)


Interfacial phenomena in perovskite oxide superlattices have the potential to provide unique functional properties for a diverse range of applications, including sensing, energy conversion, and information technology. The example of antiferromagnetic/ferromagnetic superlattices composed of La0.7Sr0.3FeO3 (LSFO) and La0.7Sr0.3MnO3 (LSMO) sublayers is discussed in detail. In this system, the antiferromagnetic order parameter in LSFO and the ferromagnetic order parameter in LSMO display dissimilar dependences on sublayer thickness and temperature due to the competition between different magnetic interactions. For a small range of sublayer thicknesses, a robust spin-flop coupling is observed such that the alignment of the LSMO magnetization with a magnetic field leads to the reorientation of the Fe moments in the LSFO layer to maintain a perpendicular orientation between the Fe and Mn moments.


Domain Wall Perpendicular Orientation Superlattice Structure Substrate Direction Sublayer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A number of people contributed to this work, including Fan Yang, Nihan Kemik, Andreas Scholl, Anthony Young, Andrew Doran, Elke Arenholz, Gerrit van der Laan, Michael Biegalski, Hans Christen, Apurva Mehta, Matthew Bibee, Rajesh Chopdekar, and Yuri Suzuki. A portion of this research was conducted at facilities operated for the Office of Basic Energy Sciences, of the U.S. Department of Energy: the Center for Nanophase Materials Sciences is sponsored at Oak Ridge National Laboratory, the Advanced Light Source is supported by the Director, Office of Science under Contract No. DE-AC02-05CH11231, and the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated by Stanford University. Research at UC Davis is supported by UC Davis start-up funds and the National Science Foundation Contract No. DMR 0747896.


  1. 1.
    R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    H.M. Christen, G. Eres, Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter 20, 264005 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    G. Rijnders, G. Koster, D.H.A. Blank, H. Rogalla, In situ monitoring during pulsed laser deposition of complex oxides during reflection high energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888–1890 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Schlom, L.-Q. Chen, X.Q. Pan, A. Schmehl, M.A. Zurbuchen, A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429–2454 (2008) CrossRefGoogle Scholar
  5. 5.
    A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    N. Reyren, S. Thiel, A.D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493–496 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, D.H.A. Blank, Structure-property relation of SrTiO3/LaAlO3 interfaces. Adv. Mater. 21, 1665–1677 (2009) CrossRefGoogle Scholar
  9. 9.
    C. Adamo, X. Ke, H.Q. Wang, H.L. Xin, T. Heeg, M.E. Hawley, W. Zander, J. Schubert, P. Schiffer, D.A. Muller, L. Maritato, D.G. Schlom, Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films. Appl. Phys. Lett. 95, 112504 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    S.J. May, J.-W. Kim, J.M. Rondinelli, E. Karapetrova, N.A. Spaldin, A. Bhattacharya, P.J. Ryan, Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 014110 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, Y. Tokura, Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn. 68, 3790–3793 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    N. Nakagawa, H.Y. Hwang, D.A. Muller, Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    W.H. Meiklejohn, C.P. Bean, New Magnetic Anisotropy. Phys. Rev. 102, 1413–1414 (1956) ADSCrossRefGoogle Scholar
  14. 14.
    J. Nogues, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    S. Smadici, P. Abbamonte, A. Bhattacharya, X. Zhai, B. Jiang, A. Rusydi, J.N. Eckstein, S.D. Bader, J.-M. Zuo, Electronic Reconstruction at SrMnO3–LaMnO3 Superlattice Interfaces. Phys. Rev. Lett. 99, 196404 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    H. Kumigashira, D. Kobayashi, R. Hashimoto, A. Chikamatsu, M. Oshima, N. Nakagawa, T. Ohnishi, M. Lippmaa, H. Wadati, A. Fujimori, K. Ono, M. Kawasaki, H. Koinuma, Inherrent charge transfer layer formation at La0.6Sr0.4FeO3/La0.6Sr0.4MnO3 heterointerfaces. Appl. Phys. Lett. 84, 5353–5355 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    J.B. Goodenough, General considerations, in Localized to Itinerant Electronic Transition in Perovskite Oxides, vol. 98 (Springer, Berlin, 2001), pp. 1–16 CrossRefGoogle Scholar
  20. 20.
    J.B. Goodenough, Jahn-Teller Phenomena in Solids. Annu. Rev. Mater. Sci. 28, 1–27 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    J.M.D. Coey, M. Viret, S. von Molnar, Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926) ADSCrossRefGoogle Scholar
  23. 23.
    R.D. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Ser. A 32, 751–767 (1976) ADSCrossRefGoogle Scholar
  24. 24.
    C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order. J. Mater. Res. 5, 829–834 (1990) ADSCrossRefGoogle Scholar
  25. 25.
    H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995) ADSCrossRefGoogle Scholar
  26. 26.
    H.Y. Hwang, T.T.M. Palstra, S.-W. Cheong, B. Batlogg, Pressure effects on the magnetoresistance in doped manganese perovskites. Phys. Rev. B 52, 15046–15049 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Moritomo, A. Asamitsu, Y. Tokura, Pressure effect on the double-exchange ferromagnet La1−xSrxMnO3 (0.15<x<0.5). Phys. Rev. B 51, 16491–16494 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Takamura, R.V. Chopdekar, E. Arenholz, Y. Suzuki, Control of the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92, 162504 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    F. Yang, N. Kemik, M.D. Biegalski, H.M. Christen, E. Arenholz, Y. Takamura, Strain engineering to control the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 97, 092503 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Fang, I.V. Solovyev, K. Terakura, Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 3169–3172 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    A. Vailionis, H. Boschker, W. Siemons, E.P. Houwman, D.H.A. Blank, G. Rijnders, G. Koster, Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    P.A. Salvador, T.D. Doan, B. Mercey, B. Raveau, Stabilization of YMnO3 in a perovskite structure as a thin film. Chem. Mater. 10, 2592–2595 (1998) CrossRefGoogle Scholar
  33. 33.
    J.M. Rondinelli, N.A. Spaldin, Structural effects on the spin-state transition in epitaxially strained LaCoO3 films. Phys. Rev. B 79, 054409 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, H.v. Lohneysen, Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 77, 014434 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, H.v. Lohneysen, Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys. Rev. B 75, 144402 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    J.W. Freeland, J.X. Ma, J. Shi, Ferromagnetic spin-correlations in strained LaCoO3 thin films. Appl. Phys. Lett. 93, 212501 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    A. Herklotz, A.D. Rata, L. Schultz, K. Dorr, Reversible strain effect on the magnetization of LaCoO3. Phys. Rev. B 79, 092409 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    K. Gupta, P. Mahadevan, Strain-driven magnetism in LaCoO3 thin films. Phys. Rev. B 79, 020406(R) (2009) ADSCrossRefGoogle Scholar
  39. 39.
    A.P. Ramirez, Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997) ADSCrossRefGoogle Scholar
  40. 40.
    J. Hemberger, A. Krimmel, T. Kurz, H.-A. Krug von Nidda, V.Y. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3 (0.4<x<0.85). Phys. Rev. B 66, 094410 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    P.-G. de Gennes, Effects of Double Exchange in Magnetic Crystals. Phys. Rev. 118, 141–154 (1960) ADSCrossRefGoogle Scholar
  42. 42.
    C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951) ADSzbMATHCrossRefGoogle Scholar
  43. 43.
    P.W. Anderson, H. Hasegawa, Considerations on double exchange. Phys. Rev. 100, 675–681. (1955) ADSCrossRefGoogle Scholar
  44. 44.
    A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995) ADSCrossRefGoogle Scholar
  45. 45.
    P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Structural effects on the magnetic and transport properties of perovskite A1−xAxMnO3 (x=0.25, 0.30). Phys. Rev. B 56, 8265 (1997) ADSCrossRefGoogle Scholar
  46. 46.
    R.L. White, Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969) ADSCrossRefGoogle Scholar
  47. 47.
    J.-C. Grenier, N. Ea, M. Pouchard, M. Abou-Sekkina, Proprietes electriques et magnetiques des ferrites oxydes La1−xSrxFeO3−y. Mater. Res. Bull. 19, 1301–1309 (1984) CrossRefGoogle Scholar
  48. 48.
    U. Shimony, J.M. Knudsen, Mossbauer studies on iron in the pervoskites La1−xSrxFeO3 (0<x<1). Phys. Rev. 144, 361–366 (1966) ADSCrossRefGoogle Scholar
  49. 49.
    In Powder Diffraction File #01-089-1269, ed. by International Centre for Diffraction Data Google Scholar
  50. 50.
    A. Fossdal, M. Menon, I. Waernhus, K. Wiik, M.-A. Einarsrud, T. Grande, Crystal structure and thermal expansion of La1−xSrxFeO3−δ materials. J. Am. Ceram. Soc. 87, 1952–1958 (2004) CrossRefGoogle Scholar
  51. 51.
    N.C. Koon, Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865–4868 (1997) ADSCrossRefGoogle Scholar
  52. 52.
    T.C. Schulthess, W.H. Butler, Consequences of spin–flop coupling in exchange biased films. Phys. Rev. Lett. 81, 4516–4519 (1998) ADSCrossRefGoogle Scholar
  53. 53.
    L.L. Hinchey, D.L. Mills, Magnetic properties of ferromagnetic–antiferromagnetic superlattice structures with mixed-spin antiferromagnetic sheets. Phys. Rev. B 34, 1689–1699 (1986) ADSCrossRefGoogle Scholar
  54. 54.
    Y. Ijiri, J.A. Borchers, R.W. Erwin, S.-H. Lee, P.J. van der Zaag, R.M. Wolf, Perpendicular coupling in exchange-biased Fe3O4/CoO superlattices. Phys. Rev. Lett. 80, 608–611 (1998) ADSCrossRefGoogle Scholar
  55. 55.
    T.M. Moran, I.K. Schuller, Effects of cooling field strength on exchange anisotropy at permalloy/CoO interfaces. J. Appl. Phys. 79, 5109–5111 (1996) ADSCrossRefGoogle Scholar
  56. 56.
    S. Dong, Q. Zhang, S. Yunoki, J.-M. Liu, E. Dagotto, Ab initio study of the intrinsic exchange bias at the SrRuO3/SrMnO3 interface. Phys. Rev. B 84, 224437 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    S. Dong, K. Yamauchi, S. Yunoki, R. Yu, S. Liang, A. Moreo, J.-M. Liu, S. Picozzi, E. Dagotto, Exchange bias driven by the Dzyaloshinskii–Moriya interaction and ferroelectric polarization at G-type antiferromagnetic Perovskite interfaces. Phys. Rev. Lett. 103, 127201 (2009) ADSCrossRefGoogle Scholar
  58. 58.
    J.B. Kortright, D.D. Awschalom, J. Stohr, S.D. Bader, Y.U. Idzerda, S.S.P. Parkin, I.K. Schuller, H.-C. Siegmann, Research frontiers in magnetic materials at soft x-ray synchrotron radiation facilities. J. Magn. Magn. Mater. 207, 7–44 (1999) ADSCrossRefGoogle Scholar
  59. 59.
    T. Funk, A. Deb, S.J. George, H. Wang, S.P. Cramer, X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coord. Chem. Rev. 249, 3–30 (2005) CrossRefGoogle Scholar
  60. 60.
    J. Stohr, Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999) ADSCrossRefGoogle Scholar
  61. 61.
    J. Stohr, R. Nakajima, Magnetic properties of transition-metal multilayers studied with X-ray magnetic circular dichroism spectroscopy. IBM J. Res. Dev. 42, 73–88 (1998) CrossRefGoogle Scholar
  62. 62.
    S. Anders, H.A. Padmore, R.M. Duarte, T. Renner, T. Stammler, A. Scholl, M.R. Scheinfein, J. Stohr, L. Seve, B. Sinkovic, Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 70, 3973–3981 (1999) ADSCrossRefGoogle Scholar
  63. 63.
    E. Arenholz, G. van der Laan, R.V. Chopdekar, Y. Suzuki, Anisotropic X-ray magnetic linear dichroism at the Fe L 2,3 edges in Fe3O4. Phys. Rev. B 74, 094407 (2006) ADSCrossRefGoogle Scholar
  64. 64.
    E. Arenholz, G. van der Laan, R.V. Chopdekar, Y. Suzuki, Angle-dependent Ni2+ X-ray magnetic linear dichroism: interfacial coupling revisited. Phys. Rev. Lett. 98, 197201 (2007) ADSCrossRefGoogle Scholar
  65. 65.
    C.T. Chen, L.H. Tjeng, J. Kwo, H.L. Kao, P. Rudolf, F. Sette, R.M. Fleming, Out-of-plane orbital characters of intrinsic and doped holes in La2−xSrxCuO4. Phys. Rev. Lett. 68, 2543 (1992) ADSCrossRefGoogle Scholar
  66. 66.
    D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, C.T. Chen, J. Vogel, M. Sacchi, S. Iacobucci, Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B 57, 11623–11631 (1998) ADSCrossRefGoogle Scholar
  67. 67.
    Y. Takamura, F. Yang, N. Kemik, E. Arenholz, M.D. Biegalski, H.M. Christen, Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices. Phys. Rev. B 80, 180417(R) (2009) ADSCrossRefGoogle Scholar
  68. 68.
    K.H. Ahn, X.W. Wu, K. Liu, C.L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys. Rev. B 54, 15299–15302 (1996) ADSCrossRefGoogle Scholar
  69. 69.
    A. Tiwari, K.P. Rajeev, Metal-insulator transition in La0.7Sr0.3Mn1−xFexO3. J. Appl. Phys. 86, 5175–5178 (1999) ADSCrossRefGoogle Scholar
  70. 70.
    M. Huijben, L.W. Martin, Y.-H. Chu, M.B. Holcomb, P. Yu, G. Rijnders, D.H.A. Blank, R. Ramesh, Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 78, 094413 (2008) ADSCrossRefGoogle Scholar
  71. 71.
    R.V. Chopdekar, E. Arenholz, Y. Suzuki, Orientation and thickness dependence of magnetization at the interfaces of highly spin-polarized manganite thin films. Phys. Rev. B 79, 104417 (2009) ADSCrossRefGoogle Scholar
  72. 72.
    A. Tebano, C. Aruta, S. Sanna, P.G. Medaglia, G. Balestrino, A.A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008) ADSCrossRefGoogle Scholar
  73. 73.
    L.F. Kourkoutis, J.H. Song, H.Y.M. Hwang, Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl. Acad. Sci. USA 107, 11682–11685 (2010) ADSCrossRefGoogle Scholar
  74. 74.
    M. Izumi, Y. Ogimoto, T. Manako, M. Kawasaki, Y. Tokura, Interface effect and its doping dependence in La1−xSrxMnO3/SrTiO3 superlattices. J. Phys. Soc. Jpn. 71, 2621–2624 (2002) ADSCrossRefGoogle Scholar
  75. 75.
    R. Herger, P.R. Willmott, C.M. Schleputz, M. Bjorck, S.A. Pauli, D. Martoccia, B.D. Patterson, D. Kumah, R. Clarke, Y. Yacoby, M. Dobeli, Structure determination of monolayer-by-monolayer grown La1−xSrxMnO3 thin films and the onset of magnetoresistance. Phys. Rev. B 77, 085401 (2008) ADSCrossRefGoogle Scholar
  76. 76.
    L.M. Berndt, V. Balbarin, Y. Suzuki, Magnetic anisotropy and strain states of (001) and (110) colossal magnetoresistance thin films. Appl. Phys. Lett. 77, 2903–2905 (2000) ADSCrossRefGoogle Scholar
  77. 77.
    J.Z. Sun, D.W. Abraham, R.A. Rao, C.B. Eom, Thickness-dependent magnetotransport in ultrathin manganite films. Appl. Phys. Lett. 74, 3017–3019 (1999) ADSCrossRefGoogle Scholar
  78. 78.
    E. Arenholz, S.O. Prestemon, Design and performance of an eight-pole resistive magnet for soft X-ray magnetic dichroism measurements. Rev. Sci. Instrum. 76, 083908 (2005) ADSCrossRefGoogle Scholar
  79. 79.
    M. Abbate, F.M.F. de Groot, J.C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G.A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida, Controlled-valence properties of La1−xSrxFeO3 and La1−xSrxMnO3 studied by soft X-ray absorption spectroscopy. Phys. Rev. B 46, 4511–4519 (1992) ADSCrossRefGoogle Scholar
  80. 80.
    F.M.F. de Groot, X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. 67, 529–622 (1994) CrossRefGoogle Scholar
  81. 81.
    E. Arenholz, G. van der Laan, F. Yang, N. Kemik, M.D. Biegalski, H.M. Christen, Y. Takamura, Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices. Appl. Phys. Lett. 94, 072503 (2009) ADSCrossRefGoogle Scholar
  82. 82.
    J. Luning, F. Nolting, A.O. Scholl, H.J.W. Seo, J. Fompeyrine, J.-P. Locquet, J. Stohr, Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by X-ray magnetic linear dichroism spectroscopy. Phys. Rev. B 67, 214433 (2003) ADSCrossRefGoogle Scholar
  83. 83.
    S. Czekaj, F. Nolting, L.J. Heyderman, P.R. Willmott, G. van der Laan, Sign dependence of the X-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films. Phys. Rev. B 73, 020401(R) (2006) ADSCrossRefGoogle Scholar
  84. 84.
    G. van der Laan, B.T. Thole, Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition-metal ions. Phys. Rev. B 43, 13401 (1991) ADSCrossRefGoogle Scholar
  85. 85.
    J.W. Seo, E.E. Fullerton, F. Nolting, A. Scholl, J. Fompeyrine, J.-P. Locquet, Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J. Phys. Condens. Matter 20, 264014 (2008) ADSCrossRefGoogle Scholar
  86. 86.
    C. Aruta, C. Adamo, A. Galdi, P. Orgiani, B. Bisogni, N.B. Brookes, J.C. Cezar, P. Thakur, C.A. Perroni, G. de Filippis, V. Cataudella, D.G. Schlom, L. Maritato, G. Ghiringhelli, Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices. Phys. Rev. B 80 (2009) Google Scholar
  87. 87.
    M. Izumi, Y. Murakami, Y. Konishi, T. Manako, M. Kawasaki, Y. Tokura, Structural characterization and magnetic properties of oxide superlattices La0.6Sr0.4MnO3/La0.6Sr0.4FeO3. Phys. Rev. B 60, 1211–1215 (1999) ADSCrossRefGoogle Scholar
  88. 88.
    M. Gu, M.D. Biegalski, H.M. Christen, C. Song, N.D. Browning, Y. Takamura, Strain relaxation defects in perovskite oxide superlattices. J. Mater. Res. 27, 1436 (2012) ADSCrossRefGoogle Scholar
  89. 89.
    F. Yang, N. Kemik, A. Scholl, A. Doran, A.T. Young, M.D. Biegalski, H.M. Christen, Y. Takamura, Correlated domain structure in perovskite oxide superlattices exhibiting spin–flop coupling. Phys. Rev. B 83 (2011) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California at DavisDavisUSA

Personalised recommendations