Skip to main content

Mechanical Laser Cooling in Cryogenic Cavities

  • Chapter
  • First Online:
Quantum Opto-Mechanics with Micromirrors

Part of the book series: Springer Theses ((Springer Theses))

  • 1207 Accesses

Abstract

In order to control mechanical systems in the quantum regime it is necessary to prepare the resonator in or close to its quantum ground state. This can be achieved by cooling it cryogenically if the mechanical frequency is high enough (for a dilution refrigerator around 1 GHz) [1], by using active feedback cooling [2–6] or by using the radiation-pressure interaction presented in this thesis to passively cool the mechanical motion [7]. A combination of cryogenic pre cooling and radiation-pressure cooling relaxes the requirements in quality and frequency on the mechanical systems and should make ground state cooling experimentally accessible even for low frequencies. The two experiments in this chapter aim at demonstrating that this is in principle possible and show the current limitations of our experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in our case radiation pressure originates from the reflection of photons off the mirror surface and not from absorption and re-emission as is the case in conventional laser cooling. Still, the cooling mechanism of both schemes is completely analogous.

  2. 2.

    The ratio between PDH power spectrum and displacement power spectrum \(S_x\) depends on the cavity detuning \(\Delta \). We can eliminate the unwanted detuning dependence by normalizing \(S_x\) via a reference signal of a known constant displacement power spectrum \(S_{ref}\) that is generated by frequency modulation of the pump laser. In addition, \(S_{ref}\) is an absolute calibration of the effective mass of the mechanical oscillator, as is outlined in detail e.g. in [8].

  3. 3.

    The reduction in finesse compared to the value of \(8000\) is due to our choice of the optimal working point on the cantilever close to the tip of the micromirror, where edge diffraction increased the losses in the cavity.

References

  1. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  2. K.J. Bruland, J.L. Garbini, W.M. Dougherty, J.A. Sidles, Optimal control of force microscope cantilevers. II. Magnetic coupling implementation. J. Appl. Phys. 80, 1959 (1996)

    Article  ADS  Google Scholar 

  3. P.-F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  4. A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003)

    Article  ADS  Google Scholar 

  5. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)

    Article  ADS  Google Scholar 

  6. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Article  ADS  Google Scholar 

  7. J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Article  ADS  Google Scholar 

  8. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  9. S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. Europhys. Lett. 81, 54003 (2008)

    Article  ADS  Google Scholar 

  10. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)

    Article  ADS  Google Scholar 

  11. K.C. Schwab, M.L. Roukes, Putting mechanics into quantum mechanics. Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  12. V. Braginsky, S.P. Vyatchanin, Low quantum noise tranquilizer for Fabry-Perot interferometer. Phys. Lett. A 293, 228 (2002)

    Article  ADS  MATH  Google Scholar 

  13. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  14. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical back-action. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  15. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  16. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  17. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  Google Scholar 

  18. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)

    Article  ADS  Google Scholar 

  19. S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  20. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, L. Rousseau, High-sensitivity optical monitoring of a micro-mechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006)

    Article  ADS  Google Scholar 

  21. M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007)

    Article  ADS  Google Scholar 

  22. J.-M. Courty, A. Heidmann, M. Pinard, Quantum limits of cold damping with optomechanical coupling. Eur. Phys. J. D 17, 399 (2001)

    Article  ADS  Google Scholar 

  23. D. Vitali, S. Mancini, L. Ribichini, P. Tombesi, Mirror quiescence and high-sensitivity position measurements with feedback. Phys. Rev. A 65, 063803 (2002)

    Article  ADS  Google Scholar 

  24. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, N.F. de Rooij, Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits. Phys. Rev. A 59, 1038 (1999)

    Article  ADS  Google Scholar 

  25. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)

    Article  ADS  Google Scholar 

  26. O. Arcizet, T. Briant, A. Heidmann, M. Pinard, Beating quantum limits in an optomechanical sensor by cavity detuning. Phys. Rev. A 73, 033819 (2006)

    Article  ADS  Google Scholar 

  27. M. Paternostro, S. Gigan, M.S. Kim, F. Blaser, H.R. Böhm, M. Aspelmeyer, Reconstructing the dynamics of a movable mirror in a detuned optical cavity. New J. Phys. 8, 107 (2006)

    Article  ADS  Google Scholar 

  28. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  29. J. Zhang, K. Peng, S.L. Braunstein, Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  30. H.R. Böhm, S. Gigan, G. Langer, J.B. Hertzberg, F. Blaser, D. Bäuerle, K.C. Schwab, A. Zeilinger, M. Aspelmeyer, High reflectivity high-Q micromechanical Bragg mirror. Appl. Phys. Lett. 89, 223101 (2006)

    Article  ADS  Google Scholar 

  31. S. Bose, K. Jacobs, P.L. Knight, Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Article  ADS  Google Scholar 

  32. M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, A. Heidmann, Entangling movable mirrors in a double-cavity system. Europhys. Lett. 72, 747 (2005)

    Article  ADS  Google Scholar 

  33. S. Pirandola, D. Vitali, P. Tombesi, S. Lloyd, Macroscopic entanglement by entanglement swapping. Phys. Rev. Lett. 97, 150403 (2006)

    Article  ADS  Google Scholar 

  34. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  35. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  36. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485 (2009)

    Article  Google Scholar 

  38. M. Aspelmeyer, K.C. Schwab, Mechanical systems at the quantum limit. New J. Phys. 10, 095001 (2008)

    Article  ADS  Google Scholar 

  39. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008)

    Article  Google Scholar 

  41. J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    Article  ADS  Google Scholar 

  42. C.A. Regal, J.D. Teufel, K.W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555 (2008)

    Article  Google Scholar 

  43. M. Poggio, M.P. Jura, C.L. Degen, M.A. Topinka, H.J. Mamin, D. Goldhaber-Gordon, D. Rugar, An off-board quantum point contact as a sensitive detector of cantilever motion. Nat. Phys. 4, 635 (2008)

    Article  Google Scholar 

  44. G.D. Cole, S. Gröblacher, K. Gugler, S. Gigan, M. Aspelmeyer, Monocrystalline Al\(_x\)Ga\(_{1-x}\)As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl. Phys. Lett. 92, 261108 (2008)

    Article  ADS  Google Scholar 

  45. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992)

    Article  ADS  Google Scholar 

  46. A.C. Bleszynski-Jayich, W.E. Shanks, J.G.E. Harris, Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin. Appl. Phys. Lett. 92, 013123 (2008)

    Article  ADS  Google Scholar 

  47. B.M. Zwickl, W.E. Shanks, A.M. Jayich, C. Yang, A.C. Bleszynsk-Jayich, J.D. Thompson, J.G.E. Harris, High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008)

    Article  ADS  Google Scholar 

  48. I. Wilson-Rae, N. Nooshi, J. Dobrindt, T.J. Kippenberg, W. Zwerger, Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 10, 095007 (2008)

    Article  ADS  Google Scholar 

  49. J.M. Dobrindt, I. Wilson-Rae, T.J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  50. M. Pinard, Y. Hadjar, A. Heidmann, Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107 (1999)

    ADS  Google Scholar 

  51. E.D. Palik, G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

  52. D.A. Harrington, M.L. Roukes, Caltech Technical Report No. CMP-106 (1994)

    Google Scholar 

  53. T. Briant, Caractérisation du couplage optomécanique entre la lumière et un miroir: bruit thermique et effets quantiques, Ph.D. thesis, l’Université Paris VI, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gröblacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gröblacher, S. (2012). Mechanical Laser Cooling in Cryogenic Cavities. In: Quantum Opto-Mechanics with Micromirrors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34955-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34955-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34954-6

  • Online ISBN: 978-3-642-34955-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics