Skip to main content

Experimental Techniques

  • Chapter
  • First Online:
Book cover Quantum Opto-Mechanics with Micromirrors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In order to have a testing station for our mechanical devices, we built a simple, fiber-based interferometer. It had several advantages over the actual Fabry-Pérot setup—it was easy to use, i.e. it did not require any active stabilization, the chips with the mechanical resonators could be easily swapped, the travel on the piezo-stage was larger and hence allowed for measuring a full chip at once and most importantly, in contrast to the actual setup, the radiation-pressure backaction was negligible and hence it did not have to be taken into account when determining the mechanical frequency and \(Q\). The working principle is to use a cleaved fiber, put it above the chip with the mechanical devices, and measure the interference between the light that is directly reflected off the fiber-tip (which is approx. 4 \(\%\)) and the light being reflected by the mechanical device, which imparts a phase modulation due to its mechanical motion (see Fig. 3.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, B.D. Terris, Force microscope using a fiber-optic displacement sensor. Rev. Mod. Instrum. 59, 2337 (1988)

    Google Scholar 

  2. K. Gugler, Aufbau und Charakterisierung eines Faser-Interferometers für Quantenexperimente an mikromechanischen Spiegeln, Master’s thesis, Universität Wien (2008)

    Google Scholar 

  3. G.D. Cole, I. Wilson-Rae, M.R. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, M. Aspelmeyer, Megahertz monocrystalline optomechanical resonators with minimal dissipation, in 23rd IEEE International Conference on Microelectromechanical Systems, TP133 Hong Kong SAR, China, 24–28 Jan 2010

    Google Scholar 

  4. H.R. Böhm, Radiation-pressure cooling of a mechanical oscillator, Ph.D. thesis, Universität Wien, 2008

    Google Scholar 

  5. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, Chichester, 1991)

    Google Scholar 

  6. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  7. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  8. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97 (1983)

    Google Scholar 

  9. R.V. Pound, Electronic frequency stabilization of microwave oscillators. Rev. Sci. Instrum. 17, 490 (1946)

    Google Scholar 

  10. E. D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79 (2001)

    Google Scholar 

  11. D.A. Shaddock, M.B. Gray, D.E. McClelland, Frequency locking a laser to an optical cavity by use of spatial mode interference. Opt. Lett. 24, 1499 (1999)

    Google Scholar 

  12. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Google Scholar 

  13. H.R. Böhm, S. Gigan, G. Langer, J.B. Hertzberg, F. Blaser, D. Bäuerle, K.C. Schwab, A. Zeilinger, M. Aspelmeyer, High reflectivity high-Q micromechanical Bragg mirror. Appl. Phys. Lett. 89, 223101 (2006)

    Google Scholar 

  14. J. Poirson, F. Bretenaker, M. Vallet, A.L. Floch, Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses, J. Opt. Soc. Am. B 14, 2811 (1997)

    Google Scholar 

  15. H.-A. Bachor, T.C. Ralph, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley-VCH, Berlin, 2004)

    Google Scholar 

  16. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Google Scholar 

  17. T. Briant, P. Cohadon, M. Pinard, A. Heidmann, Optical phase-space reconstruction of mirror motion at the attometer level. Eur. Phys. J. D 22, 131 (2003)

    Google Scholar 

  18. H.S. Black, Modulation Theory (Van Nostrand, New York, 1953)

    Google Scholar 

  19. R.D. Blevins, Formulas for Natural Frequency and Mode Shape (Krieger Publishing Company, Malabar, 1984)

    Google Scholar 

  20. L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, A.M. Kosevich, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, Oxford, 1986)

    Google Scholar 

  21. F. Blaser, Mechanical FEM Analysis and Optical Properties of Micromirrors for Radiation-Pressure Experiments, Master’s thesis, Université de Neuchâtel (2008)

    Google Scholar 

  22. M. Pinard, Y. Hadjar, A. Heidmann, Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107 (1999)

    Google Scholar 

  23. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485 (2009)

    Google Scholar 

  24. I. Tanaeva, Low-temperature cryocooling, Ph.D. thesis, Technische Universiteit Eindhoven, 2004

    Google Scholar 

  25. K. Uhlig, \(^3\)He/\(^4\)He dilution refrigerator with pulse-tube refrigerator precooling. Cryogenics 42, 73 (2002)

    Google Scholar 

  26. F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Oxford, 2007)

    Google Scholar 

  27. E.R.I. Abraham, E.A. Cornell, Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. Appl. Opt. 37, 1762 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gröblacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gröblacher, S. (2012). Experimental Techniques. In: Quantum Opto-Mechanics with Micromirrors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34955-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34955-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34954-6

  • Online ISBN: 978-3-642-34955-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics