Fingerprint and Iris Based Authentication in Inter-cooperative Emerging e-Infrastructures

  • Vincenzo Conti
  • Salvatore Vitabile
  • Luca Agnello
  • Filippo Sorbello
Part of the Studies in Computational Intelligence book series (SCI, volume 460)


E-infrastructures must support the development of heterogeneous applications for workstation network, for mobile and portable systems and devices. In this context and relating to all collaborative and pervasive computational technology a very important role is played by security and authentication systems, which represent the first step of the whole process. Biometric authentication systems represent a valid alternative to conventional authentication systems providing robust procedures for user authentication. On the other hand, Internet of Things involves a heterogeneous set of interacting devices to enable innovative global and local applications and services for users. In this chapter fingerprint and iris based unimodal and multimodal authentication systems will be described, analyzed and compared. Finally, a prototyped embedded multimodal biometric sensor will be outlined. Software and hardware prototypes have been checked against common and widely used databases.


Biometric Authentication Systems Unimodal and Multimodal Systems Embedded Sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karume, S.M., Omieno, K.K.: Synergizing E-infrastructures Initiatives to Foster e-Research in HigherEducation Institutions in Africa. Journal of Emerging Trends in Computing and Information Sciences 2(11), 632–640 (2011) ISSN 2079-8407 Google Scholar
  2. 2.
    Conti, V., Militello, C., Sorbello, F., Vitabile, S.: A Frequency-based Approach for Features Fusion in Fingerprint and Iris Multimodal Biometric Identification Systems. IEEE Transactions on Systems, Man, and Cybernetics (SMC) Part C: Applications & Reviews, 384–395, doi:10.1109/TSMCC.2010.2045374, ISSN: 1094-6977Google Scholar
  3. 3.
    Militello, C., Conti, V., Vitabile, S., Sorbello, F.: An Embedded Iris Recognizer for Portable and Mobile Devices. Special Issue on "Frontiers in Complex, Intelligent and Software Intensive Systems" of International Journal of Computer Systems Science and Engineering  25(2), 33–45 (2010)Google Scholar
  4. 4.
    Conti, V., Militello, C., Vitabile, S., Sorbello, F.: A Multimodal Technique for an Embedded Fingerprint Recognizer in Mobile Payment Systems. International Journal on Mobile Information Systems 5(2), 105–124 (2009), doi:10.3233/MIS-2009-0076, ISSN: 1574-017XGoogle Scholar
  5. 5.
    Vitabile, S., Conti, V., Lentini, G., Sorbello, F.: An Intelligent Sensor for Fingerprint Recognition. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds.) EUC 2005. LNCS, vol. 3824, pp. 27–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Militello, C., Conti, V., Vitabile, S., Sorbello, F.: Embedded Access Points for Trusted Data and Resources Access in HPC Systems. The Journal of Supercomputing, - Special Issue on High Performance Trusted Computing 55(1), 4–27, doi:DOI: 10.1007s11227-009-0379-1, ISSN (Print): 0920-8542, ISSN (Online): 1573-0484Google Scholar
  7. 7.
    Ambalakat, P.: Security of Biometric Authentication Systems. 21st Computer Science Seminar. SA1-T1-1. Page 2,
  8. 8.
    UK Biometrics Working Group(BWG): Biometrics Security Concerns (2003)Google Scholar
  9. 9.
    Michener, J.R., Acar, T.: Security domains: key management in large-scale systems. Software IEEE 17(5), 52–58 (2000), doi:10.1109/52.877864, ISSN: 0740-7459Google Scholar
  10. 10.
    Nielsen, R., Hamilton, B.A.: Observations from the Deployment of a Large Scale PKI. In: 4th Annual PKI R&D Workshop: Multiple Paths to Trust, April 19-21. NIST, Gaithersburg MD (2005)Google Scholar
  11. 11.
    Jain, A.: On-Line Fingerprint Verification. IEEE Transaction on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  12. 12.
    Flom, L., Safir, A.: Iris Recognition System, United States Patent No. 4,641,349, (issued March 2, 1987) U.S. Government Printing Office, Washington DC (1987)Google Scholar
  13. 13.
    Daugman, J.G.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  14. 14.
    Field, D.J.: Relations between the statistics of natural images and the response profiles of cortical cells. Journal of the Optical Society of America (1987)Google Scholar
  15. 15.
    Masek, L.: Recognition of human Iris patterns for biometric identification. Master’s thesis, Univ. Western Australia, Australia (2003), (November 2009)
  16. 16.
    Thai, R.: Fingerprint Image Enhancement and Minutiae Extraction. PhD Thesis, The University of Western Australia (2003)Google Scholar
  17. 17.
    Mehtre, B.M.: Fingerprint image analysis for automatic identification. Machine Vision and Applications 6(2), 124–139 (1993)CrossRefGoogle Scholar
  18. 18.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Comm. ACM. 27(3), 236–239 (1984)CrossRefGoogle Scholar
  19. 19.
    Conti, V., Militello, C., Vitabile, S., Sorbello, F.: Introducing Pseudo-Singularity Points for Efficient Fingerprints Classification and Recognition. In: 4thInternational Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2010), February 15-8, pp. 368–375. Andrzej FryczModrzewski Cracow College, Krakow (2010), doi:doi:10.1109/CISIS.2010.134Google Scholar
  20. 20.
    Karu, K., Jain, A.K.: Fingerprint classification. Pattern Recognition 29(3), 389–404 (1996)CrossRefGoogle Scholar
  21. 21.
    Wildes, R.P.: Iris Recognition: An Emerging Biometric Technology. In: Proc. of the IEEE 85(9), 1348–1363 (1997)Google Scholar
  22. 22.
    Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J., Matey, J.R., McBride, S.E.: A System for Automated Iris Recognition. In: Proc. of the 2nd IEEE Workshop Applications of Computer Vision, Sarasota, FL, December 5–7, pp. 121–128 (1994)Google Scholar
  23. 23.
    Sanchez-Reillo, R., Sanchez-Avila, C., de Martin-Roche, D.: Iris Recognition for Biometric Identification using Dyadic Wavelet Transform Zero – Crossing. In: 2001 IEEE 35th International Carnahan Conference on Security Technology, London, October 16-19, pp. 272–277 (2001)Google Scholar
  24. 24.
    Sanchez-Reillo, R., Sanchez-Avila, C.: Iris Recognition with Low Template Size. In: Proc.of International Conference Audio and Video – Based Biometric Person Authentication, pp. 324–329 (2001)Google Scholar
  25. 25.
    Sanchez-Reillo, R., Sanchez-Avila, C., de Martin-Roche, D.: Iris – Based Biometric Recognition using Dyadic Wavelet Transform. IEEE Aerospace and Electronic Systems Magazine, 3–6 (October 2002)Google Scholar
  26. 26.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698Google Scholar
  27. 27.
    PohHoonThian, N., Bengio, S., Korczak, J.: A Multi-Sample Multi-Source Model For Biometric Authentication. In: Proc. of IDIAP (April 2002)Google Scholar
  28. 28.
    Jain, A.K., Hong, L., Kulkarni, Y.: A Multimodal Biometric System Using Fingerprint, Face and Speech. In: Conference on Audio-Video based Biometric Person Authentication (1999)Google Scholar
  29. 29.
    Bubeck, M.: MultibiometricAutentication. Term Project CS574, San Diego State University (Spring 2003)Google Scholar
  30. 30.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer (2003)Google Scholar
  31. 31.
    Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)CrossRefGoogle Scholar
  32. 32.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004), doi:10.1109/TCSVT.2003.818350CrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Australian Society of Ophthalmologists,
  36. 36.
    Castro, M., Jara, A.J., Skarmeta, A.F.: An analysis of M2M platforms: challenges and opportunities for the Internet of Things. In: 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (2012)Google Scholar
  37. 37.
    Mehrotra, H., Majhi, B., Gupta, P.: Multi-algorithmic Iris authentication system. Presented at the World Acad. Sci., Eng. Technol., Buenos Aires, Argentina 34 (2008) ISSN 2070-3740Google Scholar
  38. 38.
    Khalifa, A.B., Amara, N.E.B.: Bimodal biometric verification with different fusion levels. In: Proc. 6th Int. Multi-Conf. Syst., Signals Devices, SSD 2009, pp. 1–6 (2009), doi:10.1109/SSD.2009.4956731.Google Scholar
  39. 39.
    Besbes, F., Trichili, H., Solaiman, B.: Multimodal biometric system based on fingerprint identification and Iris recognition. In: Proc. 3rd Int. IEEE Conf. Inf. Commun. Technol.: From Theory to Applications (ICTTA 2008), pp. 1–5 (2008), doi:10.1109/ICTTA.2008.4530129Google Scholar
  40. 40.
    Yang, F., Ma, B.: A new mixed-mode biometrics information fusion based-on fingerprint, hand-geometry and palm-print. In: Proc. 4th Int. IEEE Conf. Image Graph, pp. 689–693 (2007), doi:10.1109/ICIG.2007.39Google Scholar
  41. 41.
    Bonato, L.V., Molz, R.F., Furtado, J.C., Ferro, M.F., Moraes, F.G. Design of a fingerprint system using a hardware/software environment. In: Proc. of the 2003 ACM/SIGDA 11th International Symposium on Field Programmable Gate Arrays (2003a) ISBN:1-58113-651-XGoogle Scholar
  42. 42.
    Schaumont, P., Sakiyama, K., Fan, Y., Hwang, D., Yang, S., Hodjat, A., Lai, B., Verbauwhede, I.: Testing ThumbPod: Softcore bugs are hard to find. In: 8th IEEE International High-Level Design Validation and Test Workshop, pp. 77–82 (2003) ISBN:0-7803-8236-6 Google Scholar
  43. 43.
    Miyazawa, K., Ito, K., Aok, T., Kobayashi, K., Katsumata, A.: An Iris Recognition System Using Phase-Based Image Matching. In: IEEE International Conference on Image Processing, pp. 325–328 (2006)Google Scholar
  44. 44.
    Yoo, J.H., Ko, J.G., Chung, Y.S., Jung, S.U., Kim, K.H., Moon, K.Y., Chung, K.: Design of Embedded Multimodal Biometric Systems. In: 3rd International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 1058–1062 (2007), doi:10.1109/SITIS.2007.130Google Scholar
  45. 45.
    Daemen, J., Rijmen, V.: AES proposal: Rijndael. From web

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vincenzo Conti
    • 1
  • Salvatore Vitabile
    • 2
  • Luca Agnello
    • 3
  • Filippo Sorbello
    • 3
  1. 1.Facoltà di Ingegneria e Architettura e delle Scienze MotorieCittadella UniversitariaEnnaItalia
  2. 2.Dipartimento di Biopatologia e Biotecnologie Mediche e ForensiPalermoItalia
  3. 3.Dipartimento di Ingegneria Chimica, Gestionale, Informatica, MeccanicaPalermoItalia

Personalised recommendations