Generalized World Entities as an Unifying IoT Framework: A Case for the GENIUS Project

Part of the Studies in Computational Intelligence book series (SCI, volume 460)


After having briefly discussed some possible interpretations of the (still at least partially ambiguous ambiguous) ”IoT” term, this Chapter sums up the aims and the main characteristics of an on-going IoT-inspired project, GENIUS. GENIUS concerns the creation of a flexible, internet-based, IoT cognitive architecture, able to support a wide range of ‘intelligent’ applications focused on the recognition and interaction with the so-called Generalized World Entities (GWEs). The GWE paradigm intends to fill up the present fracture between the detection of entities at the sensor/physical level and their representation/management at the conceptual level. It deals in a unified way with physical objects, humans, robots, media objects and low-level events generated by sensors and with GWEs at higher level of abstraction corresponding to complex, structured events/situations/behaviours implying mutual relationships among GWEs captured at lower conceptual level. GWEs of both classes will be recognised and categorised by using, mainly, a conceptual “representation of the world”, ontology-based, auto-evolving and general enough to take into account both the “static” and “dynamic” characteristics of the GWEs. When all the GWEs (objects, agents, events, complex events, situations, circumstances, behaviours etc.) involved in a given application scenario have been recognised, human-like reasoning procedures in the form of “set of services”, general enough to be used in a vast range of GWE-based applications, can be used to solve real-life problems. Details about the use of the GWE paradigm to set up an “Ambient Assisted Living (AAL)” application for dealing with the “elderly at home problem” are provided in the Chapter.


Generalized World Entities IoT Ontologies Sensor Level Inferences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Intelligence Council: Disruptive Civil Technologies, Six Technologies With Potential Impacts on US Interests Out to 2025 (Conference Report CR 2008.07. NIS, Washington, DC (April 2008),
  2. 2.
    2. Santucci, G.: The Internet of Things, Between the Revolution of the Internet and the Metamorphosis of Objects. Brussels: CORDIS Publications and Reports, Internet of Things and Future Internet Enterprise Systems, Brussels (2010),
  3. 3.
    Uckelmann, D., Harrison, M., Michahelles, F.: An Architectural Approach Towards the Future Internet of Things. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecturing the Internet of Things, pp. 1–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. Computer Networks, The International Journal of Computer and Telecommunications Networking 54, 2787–2805 (2010)MATHGoogle Scholar
  5. 5.
    Cluster of European Research Projects on the Internet of Things (CERP-IoT): Internet of Things Strategic Research Roadmap – 15 September, 2009. European Commission DG INFSO-D4 Unit, Brussels (2009),
  6. 6.
    Bucherer, E., Uckelmann, D.: Business Models for the Internet of Things. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecturing the Internet of Things, pp. 253–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Hribernik, K.A., Hans, C., Kramer, C., Thoben, K.-D.: A Service-oriented, Semantic Approach to Data Integration for an Internet of Things Supporting Autonomous Cooperating Logistics Processes. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecturing the Internet of Things, pp. 131–158. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Capezio, F., Mastrogiovanni, F., Sgorbissa, A., Zaccaria, R.: Towards a Cognitive Architecture for Mobile Robots in Intelligent Buildings. In: Proceedings of the ICRA 2007 Workshop on Semantic Information in Robotics, pp. 13–20. IEEEXplore, Piscataway (2007)Google Scholar
  9. 9.
    Martinez Mozos, O., Jensfelt, P., Zender, H., Kruijff, G.-J.M., Burgard, W.: From Labels to Semantics: An Integrated System for Conceptual Spatial Representations of Indoor Environments for Mobile Robots. In: Proceedings of the ICRA 2007 Workshop on Semantic Information in Robotics, pp. 25–32. IEEEXplore, Piscataway (2007)Google Scholar
  10. 10.
    Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., Seo, B.S., Cho, Y.J.: The PEIS-Ecology Project: Vision and Results. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp. 2329–2335. IEEEXplore, Piscataway (2008)Google Scholar
  11. 11.
    Zarri, G.P.: Representation and Management of Narrative Information – Theoretical Principles and Implementation. Springer, London (2009)CrossRefGoogle Scholar
  12. 12.
    Zarri, G.P.: Knowledge Representation and Inference Techniques to Improve the Management of Gas and Oil Facilities. Knowledge-Based Systems (KNOSYS) 24, 989–1003 (2011)CrossRefGoogle Scholar
  13. 13.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297–1304. IEEEXplore, Piscataway (2011)Google Scholar
  14. 14.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57, 1371–1354 (2004)Google Scholar
  15. 15.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  16. 16.
    Novalija, I., Vassileiou, H., Jermol, M., Bradeško, L.: Formalized EURIDICE Domain Knowledge – Deliverable D12.2 (Final Draft, version 2.0). EC EURIDICE Integrated Project – ICT 2007-216271 (2009),
  17. 17.
    Velasco, J.R., Vega, M. (eds.): Contributors: SotA Report, Smart Space DIY Application Creation and Interaction Design – Deliverable D4.1 (Final Version, 3.0). Do-it-Yourself Smart Experiences (DiYSE) ITEA 2 project 08005,
  18. 18.
    Zarri, G.P.: Differentiating Between “Functional” and “Semantic” Roles in a High-Level Conceptual Data Modeling Language. In: Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference, FLAIRS-24, pp. 75–80. AAAI Press, Menlo Park (2011)Google Scholar
  19. 19.
    Noy, N.F., Fergerson, R.W., Musen, M.A.: The Knowledge Model of Protégé-2000: Combining Interoperability and Flexibility. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 17–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A. (eds.): OWL Web Ontology Language Reference, W3C Recommendation. W3C (February 10, 2004),
  21. 21.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language Primer, W3C Recommendation. W3C (October 27, 2009),
  22. 22.
  23. 23.
    Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: A Model of Roles Within an Ontology Development Tool: Hozo. Journal of Applied Ontology 2, 1591–1579 (2007)Google Scholar
  24. 24.
    Salguero, A.G., Delgado, C., Araque, F.: Easing the Definition of N–Ary Relations for Supporting Spatio–Temporal Models in OWL. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 271–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Liu, W., Liu, Z., Fu, J., Hu, R., Zhong, Z.: Extending OWL for Modeling Event-oriented Ontology. In: Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 581–586. IEEE Computer Society Press, Los Alamitos (2010)CrossRefGoogle Scholar
  26. 26.
    Zarri, G.P.: Representation of Temporal Knowledge in Events: The Formalism, and Its Potential for Legal Narratives. Information & Communications Technology Law 7, 213–241 (1998)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  29. 29.
    Zarri, G.P.: Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 304–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Vasilakos, A.V., Chen, H.-H., Mouftahm, H., Habib, I., Montgomery, K., guest editors: Special Issue on Wireless and Pervasive Communications for Healthcare. IEEE Journal on Selected Areas in Communications 27(4), 361–574 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LaLIC/STIH LaboratorySorbonne UniversityParisFrance

Personalised recommendations