Skip to main content

Laserphysik und -biologie

  • Chapter
  • First Online:
Lasermedizin in der Ästhetischen Chirurgie

Zusammenfassung

Einsteins Idee von der stimulierten Emission von Strahlung (Einstein 1917) bildete die Grundlage für die Erfindung des LASERs (Akronym für „Light Amplification by Stimulated Emission of Radiation“, eingeführt von Gordon Gould). Albert Einstein entwickelte das theoretische Konzept für die Lichtausbreitung in Wellenpaketen (Photonen) und für die sog. stimulierte Emission . Obwohl Einstein den Laser nicht erfunden hat, legte er dennoch den Grundstein hierzu, indem er darauf hinwies, dass unter Beachtung der Photonenstatistik eine stimulierte Emission von Strahlung möglich wäre (Abb. 5.1a).

Das Kapitel basiert auf Beiträgen (Steiner 2013a,b) aus Raulin C, Karsai S (Hrsg) Lasertherapie der Haut; mit frdl. Genehmigung der Herausgeber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Anderson RR, Parish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220: 524–527

    Article  CAS  PubMed  Google Scholar 

  • Anderson RR, Margolis RJ, Watanabe S, Flotte T, Hruza GJ, Dover JS (1989) Selective Photothermolysis of Cutaneous Pifmentation by Q-switched Nd:YAG Laser Pulses at 1064, 532 and 355 nm. J Invest Dermatol 93: 28–32

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu AJ (1970) Transversely Excited Atmospheric Pressure CO2 Lasers. Appl Phys Lett 16: 504–505

    Article  CAS  Google Scholar 

  • Boulnois JL (1986) Photophysical processes in recent medical laser developments: a review. Lasers Med Sci 1: 47–66

    Article  Google Scholar 

  • Cammarata F, Wautelety M (1999) Medical lasers and laser-tissue interactions. Phys Educ 34: 156–161

    Article  Google Scholar 

  • Diels JC, Rudolph W (2006) Ultrashort Laser Pulse Phenomena. Academic Press

    Google Scholar 

  • Einstein A (1917) Zur Quantentheorie der Strahlung. Physik Zeitschr 18: 121–128

    CAS  Google Scholar 

  • Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16: 4

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent Light Emission From GaAs Junctions. Physical Review Letters 9: 366–369

    Article  CAS  Google Scholar 

  • Hawkins-Evans D, Abrahamse H (2009) A review of laboratory-based methods to investigate second messengers in low-level laser therapy (LLLT). Medical Laser Application 24: 201–215

    Article  Google Scholar 

  • Hibst R (1997) Technik, Wirkungsweise und medizinische Anwendungen von Holmium- und Erbium-Laser. In: Müller GJ, Berlien HP (Hrsg) Fortschritte der Lasermedizin 15. ecomed, Landsberg

    Google Scholar 

  • Hoffmann RM (2003) Laser Prostatectomy versus Transurethral Resection for Treating Benign Prostatic Obstruction: A Systematic Review. J Urol 169: 210–215

    Article  Google Scholar 

  • Ihler B (1992) Laser Lithotripsie-Untersuchung der in-vitro Fragmentierung mit Mikrosekunden-Impulsen. Dissertation, Universität Karlsruhe

    Google Scholar 

  • Ivanenko MM, Hering P (1998) Wet bone ablation with mechanically Q-switched high-repetition-rate CO2 laser. Appl Phys B 67: 395–397

    Article  CAS  Google Scholar 

  • Jacques S (1993) The role of tissue optics and pulse duration during high-power laser irradiation. Applied Optics 32: 2447–2454

    Article  CAS  PubMed  Google Scholar 

  • Karu TI (2003) Low-power laser therapy. In: Vo-Dinh T (Hrsg) Biomedical photonics handbook. CRC Press London, S 48–250

    Google Scholar 

  • Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187: 493–494

    Article  Google Scholar 

  • Maiman TH (2000) The Laser Odyssey. Laser Press, Blaine, WA, USA

    Google Scholar 

  • Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR (2004) Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 34(5): 426–438

    Article  PubMed  Google Scholar 

  • Naeser MA, Hamblin MR (2011) Potential for Transcranial Laser or LED Therapy to Treat Stroke, Traumatic Brain Injury, and Neurodegenerative Disease. Photomed Laser Surg 29(7): 443–446

    Article  PubMed Central  PubMed  Google Scholar 

  • Pearle MS, Drach GW, Roehrborn CG (1998) Safety and efficacy of the alexandrite laser for the treatment of renal and ureteral calculi. Urology 51: 33–38

    Article  CAS  PubMed  Google Scholar 

  • Pollack SA, Chang DB (1988) Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2 and CaF2 crystals. J Appl Phys 64: 2885–2893

    Article  CAS  Google Scholar 

  • Pollnau M, Jackson SD (2001) Erbium 3-µm Fiber Lasers. IEEE 7: 30–40

    CAS  Google Scholar 

  • Raulin C, Karsai S (2013) Lasertherapie der Haut. Springer, Berlin, S 3–39

    Book  Google Scholar 

  • Romero LF, Trelles O, Trelles MA (2006) Real-Time Simulation for Laser-Tissue Interaction Model. NIC Series 33: 415–422

    Google Scholar 

  • Saleh BEA, Teich MC (2007) Fundamentals of Photonics (Wiley Series in Pure and Applied Optics). Wiley

    Google Scholar 

  • Schawlow AL, Townes CH (1958) Infrared and Optical Masers. Phys Rev 112: 1940–1949

    Article  CAS  Google Scholar 

  • Steiner R (1994) Thermal and Non-Thermal Laser-Dissection. End Surg 2: 214–220

    CAS  Google Scholar 

  • Steiner R (2003) Interactions of Laser Radiation with Biological Tissue. In Berlien HP, Müller GJ (Hrsg) Applied Laser Medicine. Springer, Berlin, S 101–106

    Google Scholar 

  • Steiner R (2013a) Grundlagen der Laserphysik. In: Raulin C, Karsai S (Hrsg) Lasertherapie der Haut. Springer, Berlin, S 3–23

    Chapter  Google Scholar 

  • Steiner R (2013b) Laser-Gewebe-Wechselwirkungen. In: Raulin C, Karsai S (Hrsg) Lasertherapie der Haut. Springer, Berlin, S 25–39

    Chapter  Google Scholar 

  • Steiner R, Melnik IS, Kienle A (1993) Light penetration in human skin: in-vivo measurements using isotropic detectors. SPIE 1881: 222–230

    Google Scholar 

  • Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y (2002) Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission. Nature 420: 650–653

    Article  CAS  PubMed  Google Scholar 

  • Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol 53: 825–835

    Article  CAS  PubMed  Google Scholar 

  • Townes CH (2007) Obituary Theodore H. Maiman (1927-2007). Maker of the first laser. Nature 447: 654

    Article  PubMed  Google Scholar 

  • Vogel A, Venugopalan V (2003) Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem Rev 103: 577–644

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jacques SL, Zheng L (1995) MCML – Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine 47: 131–146

    Article  CAS  Google Scholar 

  • Wendt-Nordahl G, Huckele S, Honeck P et al. (2008) Systematic Evaluation of a Recent Introduced 2-µm Continuous-Wave Thulium Laser for Vaporesection of the Prostate. J Endourol 22: 1041–1046

    Article  PubMed  Google Scholar 

  • Wikipedia “Laguerre-gaussian“ (2014) http://en.wikipedia.org/wiki/File:Laguerre-gaussian.png . Zugegriffen: 03.04.2014

  • Basov NG, Danilychev VA, Popov YM (1971) Stimulated emission in the vacuum ultraviolet region. Sov J Quantum Electron 1: 18–22

    Article  Google Scholar 

  • Demtröder W (2006) Atoms, Molecules and Photons. Springer, Berlin

    Google Scholar 

  • Elhilali M, Elzayat EA (2008) Laser Prostatic Surgery: An Update. African J Urol: 1–14

    Google Scholar 

  • Frank F, Wondrazek F (2003) Erbium:YAG-Laser. In: Berlien HP, Müller GJ (2003) Applied Laser Medicine. Springer, Berlin

    Google Scholar 

  • Gross H (2005/2006/2008) Handbook of Optical systems. Vol. 1 + 4, Wiley

    Google Scholar 

  • Hecht J (1992) Laser Pioneers. Academic Press

    Google Scholar 

  • Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophysics Journal 93: 70–83

    Article  Google Scholar 

  • Johnson DE (1992) Use of the Holmium:YAG Laser in Urology. Lasers in Surgery and Medicine 12: 353–363

    Article  CAS  PubMed  Google Scholar 

  • Moulton PF (1986) Spectroscopic and laser characterisation of Ti:Al2O3. J Opt Soc Am B 3: 125–133

    Google Scholar 

  • Nair LG (1982) Dye Lasers. Prog Quantum Electron 7: 153–268

    Article  CAS  Google Scholar 

  • Riehle F (2004) Frequency Standards – Basics and Applications. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiner, R. (2015). Laserphysik und -biologie. In: Metelmann, HR., Hammes, S. (eds) Lasermedizin in der Ästhetischen Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34936-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34936-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34935-5

  • Online ISBN: 978-3-642-34936-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics