Advertisement

Cryptanalysis of Pseudo-random Generators Based on Vectorial FCSRs

  • Thierry P. Berger
  • Marine Minier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7668)

Abstract

Feedback with Carry Shift Registers (FCSRs) have been first proposed in 2005 by F. Arnault and T. Berger as a promising alternative to LFSRs for the design of stream ciphers. The original proposal called F-FCSR simply filters the content of a FCSR in Galois mode using a linear function. In 2008, Hell and Johannson attacked this version using a method called LFSRization of F-FCSR. This attack is based on the fact that a single feedback bit controls the values of all the carry cells. Thus, a trail of 0 in the feedback bit annihilates the content of the carry register, leading to transform the FCSR into an LFSR during a sufficient amount of time.

Following this attack, a new version of F-FCSR was proposed based on a new ring FCSR representation that guarantees that each carry cell depends on a distinct cell of the main register. This new proposal prevents the LFSRization from happening and remains unbroken since 2009. In parallel, Alaillou, Marjane and Mokrane proposed to replace the FCSR in Galois mode of the original proposal by a Vectorial FCSR (V-FCSR) in Galois mode.

In this paper, we first introduce a general theoretical framework to show that Vectorial FCSRs could be seen as a particular case of classical FCSRs. Then, we show that Vectorial FCSRs used in Galois mode stay sensitive to the LFSRization of FCSRs. Finally, we demonstrate that hardware implementations of V-FCSRs in Galois mode are less efficient than those based on FCSRs in ring mode.

Keywords

stream cipher FCSRs n-adic numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allailou, B., Marjane, A., Mokrane, A.: Design of a Novel Pseudo-Random Generator Based on Vectorial FCSRs. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 76–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Arnault, F., Berger, T.P., Pousse, B., Minier, M.: Revisiting LFSRs for cryptographic applications. IEEE Transactions on Information Theory 57(12), 8095–8113 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arnault, F., Berger, T.P., Pousse, B.: A matrix approach for FCSR automata. Cryptography and Communications 3(2), 109–139 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arnault, F., Berger, T.P., Lauradoux, C.: The F-FCSR primitive specification and supporting documentation. In: ECRYPT - Network of Excellence in Cryptology, Call for stream Cipher Primitives (2005), http://www.ecrypt.eu.org/stream/
  5. 5.
    Arnault, F., Berger, T.P.: F-FCSR: Design of a New Class of Stream Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Arnault, F., Berger, T.P., Lauradoux, C., Minier, M.: X-FCSR – A New Software Oriented Stream Cipher Based Upon FCSRs. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 341–350. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Arnault, F., Berger, T., Lauradoux, C.: F-FCSR Stream Ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 170–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Arnault, F., Berger, T., Lauradoux, C., Minier, M., Pousse, B.: A New Approach for FCSRs. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 433–448. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Arnault, F., Berger, T.P., Minier, M.: Some Results on FCSR Automata With Applications to the Security of FCSR-Based Pseudorandom Generators. IEEE Transactions on Information Theory 54(2), 836–840 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Berger, T.P., Minier, M., Pousse, B.: Software Oriented Stream Ciphers Based upon FCSRs in Diversified Mode. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 119–135. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Klapper, A., Xu, J.: Algebraic Feedback Shift Registers. Theoretical Computer Science 226, 61–93 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Goresky, M., Klapper, A.: Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Transactions on Information Theory 48(11), 2826–2836 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hell, M., Johansson, T.: Breaking the F-FCSR-H Stream Cipher in Real Time. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 557–569. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Klapper, A., Goresky, M.: 2-Adic Shift Registers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Marjane, A., Allailou, B.: Vectorial Conception of FCSR. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 240–252. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    eSTREAM, ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream
  17. 17.
    Silvester, J.R.: Determinants of Blocks Matrices. The Mathematical Gazette 84(501), 460–467 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thierry P. Berger
    • 1
  • Marine Minier
    • 2
  1. 1.XLIM (UMR CNRS 7252)Université de LimogesLimoges CedexFrance
  2. 2.INSA-LyonUniversité de Lyon, INRIAVilleurbanneFrance

Personalised recommendations