Advertisement

Collision Attack on the Hamsi-256 Compression Function

  • Mario Lamberger
  • Florian Mendel
  • Vincent Rijmen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7668)

Abstract

Hamsi-256 is a cryptographic hash functions submitted by Küçük to the NIST SHA-3 competition in 2008. It was selected by NIST as one of the 14 round 2 candidates in 2009. Even though Hamsi-256 did not make it to the final round in 2010 it is still an interesting target for cryptanalysts. Since Hamsi-256 has been proposed, it received a great deal of cryptanalysis. Besides the second-preimage attacks on the hash function, most cryptanalysis focused on non-random properties of the compression function or output transformation of Hamsi-256. Interestingly, the collision resistance of the hash or compression function got much less attention. In this paper, we present a collision attack on the Hamsi-256 compression function with a complexity of about 2124.1.

Keywords

hash function differential cryptanalysis collision attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumasson, J.-P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødegård, R., Peyrin, T., Schläffer, M.: Distinguishers for the Compression Function and Output Transformation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 87–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Anderson, R., Knudsen, L.: Serpent: A New Block Cipher Proposal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  6. 6.
    Çalık, Ç., Turan, M.S.: Message Recovery and Pseudo-preimage Attacks on the Compression Function of Hamsi-256. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 205–221. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard [5], pp. 416–427Google Scholar
  8. 8.
    Dinur, I., Shamir, A.: An Improved Algebraic Attack on Hamsi-256. Cryptology ePrint Archive, Report 2010/602 (2010), http://eprint.iacr.org/
  9. 9.
    Dinur, I., Shamir, A.: An Improved Algebraic Attack on Hamsi-256. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 88–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fuhr, T.: Finding Second Preimages of Short Messages for Hamsi-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 20–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Küçük, Ö.: The Hash Function Hamsi. Submission to NIST (updated) (2009)Google Scholar
  13. 13.
    Küçük, Ö.: Design and Analysis of Cryptographic Hash Functions. Ph.D. thesis, KU Leuven (April 2012)Google Scholar
  14. 14.
    Li, Y., Wang, A.: Using genetic algorithm to find near collisions for the compress function of Hamsi-256. In: BIC-TA, pp. 826–829. IEEE (2010)Google Scholar
  15. 15.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [5], pp. 428–446Google Scholar
  16. 16.
    National Institute of Standards and Technology: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007), http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
  17. 17.
    Nikolic, I.: Near Collisions for the Compression Function of Hamsi-256. CRYPTO rump session (2009)Google Scholar
  18. 18.
    Wang, M., Wang, X., Jia, K., Wang, W.: New Pseudo-Near-Collision Attack on Reduced-Round of Hamsi-256. Cryptology ePrint Archive, Report 2009/484 (2009), http://eprint.iacr.org/
  19. 19.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mario Lamberger
    • 1
  • Florian Mendel
    • 2
  • Vincent Rijmen
    • 2
  1. 1.NXP SemiconductorsAustria
  2. 2.ESAT/COSIC and IBBTKatholieke Universiteit LeuvenBelgium

Personalised recommendations