Advertisement

Port-Hamiltonian Differential-Algebraic Systems

  • A. J. van der SchaftEmail author
Chapter
Part of the Differential-Algebraic Equations Forum book series (DAEF)

Abstract

The basic starting point of port-Hamiltonian systems theory is network modeling; considering the overall physical system as the interconnection of simple subsystems, mutually influencing each other via energy flow. As a result of the interconnections algebraic constraints between the state variables commonly arise. This leads to the description of the system by differential-algebraic equations (DAEs), i.e., a combination of ordinary differential equations with algebraic constraints. The basic point of view put forward in this survey paper is that the differential-algebraic equations that arise are not just arbitrary, but are endowed with a special mathematical structure; in particular with an underlying geometric structure known as a Dirac structure. It will be discussed how this knowledge can be exploited for analysis and control.

Keywords

Port-Hamiltonian systems Passivity Algebraic constraints Kinematic constraints Casimirs Switching systems Dirac structure Interconnection 

Mathematics Subject Classification (2010)

34A09 37J05 70G45 93B10 93B27 93C10 

Notes

Acknowledgements

This survey article is based on joint work with many colleagues, whom I thank for a very stimulating collaboration. In particular I thank Bernhard Maschke for continuing joint efforts over the years.

References

  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings, Reading (1978) zbMATHGoogle Scholar
  2. 2.
    Battle, C., Massana, I., Simo, E.: Representation of a general composition of Dirac structures. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12–15, pp. 5199–5204 (2011) CrossRefGoogle Scholar
  3. 3.
    Belevitch, V.: Classical Network Theory. Holden-Day, San Francisco (1968) zbMATHGoogle Scholar
  4. 4.
    Bloch, A.M., Crouch, P.E.: Representations of Dirac structures on vector spaces and nonlinear LC circuits. In: Proceedings Symposia in Pure Mathematics, Differential Geometry and Control Theory, pp. 103–117. American Mathematical Society, Providence (1999) Google Scholar
  5. 5.
    Brogliato, B.: Nonsmooth Mechanics. Communications and Control Engineering, 2nd edn. Springer, London (1999) zbMATHCrossRefGoogle Scholar
  6. 6.
    Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 1036–1046 (2003) CrossRefGoogle Scholar
  7. 7.
    Cervera, J., van der Schaft, A.J., Banos, A.: Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) zbMATHCrossRefGoogle Scholar
  8. 8.
    Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dalsmo, M., van der Schaft, A.J.: On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37(1), 54–91 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Desoer, C.A., Sastry, S.S.: Jump behavior of circuits and systems. IEEE Trans. Circuits Syst. 28, 1109–1124 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, Chichester (1993) Google Scholar
  13. 13.
    Escobar, G., van der Schaft, A.J., Ortega, R.: A Hamiltonian viewpoint in the modelling of switching power converters. Automatica 35, 445–452 (1999). Special Issue on Hybrid Systems zbMATHCrossRefGoogle Scholar
  14. 14.
    Gerritsen, K., van der Schaft, A.J., Heemels, W.P.M.H.: On switched Hamiltonian systems. In: Gilliam, D.S., Rosenthal, J. (eds.) Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (MTNS2002), South Bend, August 12–16 (2002) Google Scholar
  15. 15.
    Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond graphs. In: Nonlinear and Hybrid Systems in Automotive Control, pp. 351–372 (2003) Google Scholar
  16. 16.
    Koopman, J., Jeltsema, D., Verhaegen, M.: Port-Hamiltonian formulation and analysis of the LuGre friction model. In: 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 3181–3186. IEEE, Control Systems Society, New York (2008) Google Scholar
  17. 17.
    Kurula, M., Zwart, H., van der Schaft, A.J., Behrndt, J.: Dirac structures and their composition on Hilbert spaces. J. Math. Anal. Appl. 372, 402–422 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution theory, Lyapunov functions, and stability. Automatica 48(5), 954–963 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Maschke, B.M., van der Schaft, A.J.: Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. In: 2nd IFAC Symposium on Nonlinear Control Systems Design (NOLCOS), Bordeaux, June, pp. 359–365 (1992) Google Scholar
  20. 20.
    Maschke, B.M., van der Schaft, A.J., Breedveld, P.C.: An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators. J. Franklin Inst. 329(5), 923–966 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Narayanan, H.: Some applications of an implicit duality theorem to connections of structures of special types including Dirac and reciprocal structures. Syst. Control Lett. 45, 87–96 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (1972) zbMATHGoogle Scholar
  23. 23.
    Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, New York (1990) zbMATHCrossRefGoogle Scholar
  24. 24.
    Ortega, R., van der Schaft, A.J., Mareels, Y., Maschke, B.M.: Putting energy back in control. Control Syst. Mag. 21, 18–33 (2001) CrossRefGoogle Scholar
  25. 25.
    Ortega, R., van der Schaft, A.J., Maschke, B.M., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Pasumarthy, R., van der Schaft, A.J.: Achievable Casimirs and its implications on control of port-Hamiltonian systems. Int. J. Control 80, 1421–1438 (2007) zbMATHCrossRefGoogle Scholar
  27. 27.
    Paynter, H.M.: Analysis and Design of Engineering Systems. MIT Press, Cambridge (1961) Google Scholar
  28. 28.
    van der Schaft, A.J.: Equations of motion for Hamiltonian systems with constraints. J. Phys. A, Math. Gen. 20, 3271–3277 (1987) zbMATHCrossRefGoogle Scholar
  29. 29.
    van der Schaft, A.J.: Implicit Hamiltonian systems with symmetry. Rep. Math. Phys. 41, 203–221 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    van der Schaft, A.J.: Interconnection and geometry. In: Polderman, J.W., Trentelman, H.L. (eds.) The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems, Groningen, The Netherlands, pp. 203–218 (1999) Google Scholar
  31. 31.
    van der Schaft, A.J.: L 2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering. Springer, Berlin (2000) zbMATHCrossRefGoogle Scholar
  32. 32.
    van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Advanced Dynamics and Control of Structures and Machines. CISM Courses and Lectures, vol. 444. Springer, New York (2004) Google Scholar
  33. 33.
    van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Sanz-Sole, M., Soria, J., Verona, J.L., Verdura, J. (eds.) Proc. of the International Congress of Mathematicians, vol. III, Invited Lectures, Madrid, Spain, pp. 1339–1365 (2006) Google Scholar
  34. 34.
    van der Schaft, A.J.: Port-Hamiltonian systems. In: Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H. (eds.) Modeling and Control of Complex Physical Systems; the Port-Hamiltonian Approach, pp. 53–130. Springer, Berlin (2009). ISBN 978-3-642-03195-3. Chap. 2 Google Scholar
  35. 35.
    van der Schaft, A.J., Camlibel, M.K.: A state transfer principle for switching port-Hamiltonian systems. In: Proc. 48th IEEE Conf. on Decision and Control, Shanghai, China, December 16–18, pp. 45–50 (2009) Google Scholar
  36. 36.
    van der Schaft, A.J., Cervera, J.: Composition of Dirac structures and control of port-Hamiltonian systems. In: Gilliam, D.S., Rosenthal, J. (eds.) Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems, August (2002) Google Scholar
  37. 37.
    van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 45, 362–371 (1995) Google Scholar
  39. 39.
    van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J. Geom. Phys. 42, 166–194 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    van der Schaft, A.J., Maschke, B.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. (2013, to appear) Google Scholar
  41. 41.
    van der Schaft, A.J., Schumacher, J.M.: The complementary-slackness class of hybrid systems. Math. Control Signals Syst. 9, 266–301 (1996) zbMATHCrossRefGoogle Scholar
  42. 42.
    van der Schaft, A.J., Schumacher, J.M.: Complementarity modelling of hybrid systems. IEEE Trans. Autom. Control AC-43, 483–490 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations