Skip to main content

Evolutionary Fuzzy Rules for Ordinal Binary Classification with Monotonicity Constraints

  • Chapter
Soft Computing: State of the Art Theory and Novel Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 291))

Abstract

We present an approach to learn fuzzy binary decision rules from ordinal temporal data where the task is to classify every instance at each point in time. We assume that one class is preferred to the other, e.g. the undesirable class must not be misclassified. Hence it is appealing to use the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) to exploit preference information about the problem. In this framework, the VC-DomLEM algorithm has been used to generate the minimal set of consistent rules. Every attribute is then fuzzified by first applying a crisp clustering to the rules’ antecedent thresholds and second using the cluster centroids as indicator for the overlap of neighboring trapezoidal normal membership functions. The widths of the neighboring fuzzy sets are finally tuned by an evolutionary algorithm trying to minimize the specificity of the current fuzzy rule base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences 181(5), 987–1002 (2011), doi:10.1016/j.ins.2010.10.030

    Article  MathSciNet  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to decision under uncertainty and time preference. Annals of Operations Research 176(1), 41–75 (2010), doi:10.1007/s10479-009-0566-8

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences 136(1-4), 109–133 (2001), doi:10.1016/S0020-0255(01)00144-X

    Article  MATH  Google Scholar 

  • MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  • Moewes, C.: Application of support vector machines to discriminate vehicle crash events. Diploma thesis, School of Computer Science, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany (2007)

    Google Scholar 

  • Moewes, C., Kruse, R.: Unification of fuzzy SVMs and rule extraction methods through imprecise domain knowledge. In: Verdegay, J.L., Magdalena, L., Ojeda-Aciego, M. (eds.) Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), Torremolinos (Málaga), pp. 1527–1534 (2008)

    Google Scholar 

  • Moewes, C., Kruse, R.: Zuordnen von linguistischen Ausdrücken zu Motiven in Zeitreihen (Matching of Labeled Terms to Time Series Motifs). Automatisierungstechnik 57(3), 146–154 (2009), doi:10.1524/auto.2009.0760

    Article  Google Scholar 

  • Moewes, C., Kruse, R.: On the usefulness of fuzzy SVMs and the extraction of fuzzy rules from SVMs. In: Galichet, S., Montero, J., Mauris, G. (eds.) Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2011) and LFA-2011, Advances in Intelligent Systems Research, vol. 17, pp. 943–948. Atlantis Press, Amsterdam (2011), doi:10.2991/eusflat.2011.46

    Google Scholar 

  • Moewes, C., Otte, C., Kruse, R.: Tackling Multiple-Instance Problems in Safety-Related Domains by Quasilinear SVM. In: Dubois, D., Lubiano, M.A., Prade, H., Ángeles Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. AISC, vol. 48, pp. 409–416. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  • Moewes, C., Otte, C., Kruse, R.: Simple machine learning approaches to safety-related systems. In: De, R.K., Mandal, D.P., Ghosh, A. (eds.) Machine Interpretation of Patterns: Image Analysis and Data Mining. Statistical Science and Interdisciplinary Research, vol. 11, pp. 231–249. World Scientific Publishing Co. Inc., Hackensack (2010)

    Chapter  Google Scholar 

  • Nauck, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 89(3), 277–288 (1997), doi:10.1016/S0165-0114(97)00009-2

    Article  MathSciNet  Google Scholar 

  • Nusser, S.: Robust learning in safety-related domains: Machine learning methods for solving safety-related application problems. PhD thesis, School of Computer Science, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany (2009)

    Google Scholar 

  • Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Norwell (1991)

    MATH  Google Scholar 

  • Schröder, M., Petersen, R., Klawonn, F., Kruse, R.: Two paradigms of automotive fuzzy logic applications. In: Jamshidi, M., Titli, A., Zadeh, L., Boverie, S. (eds.) Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems. Environmental and Intelligent Manufacturing Systems Series, vol. 9, pp. 153–174. Prentice-Hall, Inc., Upper Saddle River (1997)

    Google Scholar 

  • Wang, J., Lee, C.: Self-adaptive neuro-fuzzy inference systems for classification applications. IEEE Transactions on Fuzzy Systems 10(6), 790–802 (2002), doi:10.1109/TFUZZ.2002.805880

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Moewes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moewes, C., Kruse, R. (2013). Evolutionary Fuzzy Rules for Ordinal Binary Classification with Monotonicity Constraints. In: Yager, R., Abbasov, A., Reformat, M., Shahbazova, S. (eds) Soft Computing: State of the Art Theory and Novel Applications. Studies in Fuzziness and Soft Computing, vol 291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34922-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34922-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34921-8

  • Online ISBN: 978-3-642-34922-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics