Skip to main content

Introduction

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 461))

Abstract

Visual perception is the ability to detect light and interpret it. The early explanation of vision was provided by two major ancient Greek schools of thought.One believed in the “emission theory” championed by scholars like Euclid and Ptolemy, according to which vision occurs when light rays emanate from the eyes and intercepted by visual objects. The other school championed by scholars like Aristotle and Galen, believed in “intromission” where vision occurs by something entering the eyes representative of the object [1]. The Persian scholar Ibn al-Haytham (‘Alhazen’) is credited for refining the intromission theory into the modernly accepted theory of perception of vision [2]. In his most influential “Book of Optics”, he defines vision to be due to the light from objects entering the eye [3], [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://en.wikipedia.org/wiki/Visual_perception

  2. Sabra, A.: The Optics of Ibn al-Haytham. Warburg Institute, London (1989) ISBN: 0854810722

    Google Scholar 

  3. Sabra, A.: Ibn al-haytham, brief life of an arab mathematician: died circa 1040. Harvard Magazine, 54–55 (2003)

    Google Scholar 

  4. Sabra, A.: Ibn al-haytham’s criticisms of ptolemy’s optics. Journal of the History of Philolosophy 4, 145–149 (1966)

    Article  Google Scholar 

  5. Berger, J., Mohr, J.: Another Way of Telling. Pantheon, New York (1982)

    Google Scholar 

  6. Nilsson, D.: The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society London B: Biological Sciences 364(1531), 2833–2847 (2009)

    Article  Google Scholar 

  7. Land, M., Nilsson, D.: Animal eyes. Oxford University Press, Oxford (2002) ISBN: 0198575645

    Google Scholar 

  8. Land, M.: Visual acuity in insects. Annual Review of Entomology 42(1), 147–177 (1977)

    Article  Google Scholar 

  9. Innovation. Carl Zeiss Magazine (17), 16–17 (2006)

    Google Scholar 

  10. Pirenne, M.: Vision and the Eye. Chapman and Hall, London (1967)

    Google Scholar 

  11. de Vries, H.: The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10, 553–564 (1943)

    Article  Google Scholar 

  12. Rose, A.: The relative sensitivities of television pickup tubes, photographic film, and the human eye. Proceedings of the Institute of Radio Engineering 30(6), 293–300 (1942)

    Google Scholar 

  13. Srinivasan, M., Laughlin, S., Dubs, A.: Predictive coding: A fresh view of inhibition in the retina. Philosophical Transactions of the Royal Society London B: Biological Sciences 216(1205), 427–459 (1982)

    Google Scholar 

  14. Tsukamoto, Y., Smith, R., Sterling, P.: Collective coding of correlated cone signals in the retinal ganglion cell. Proceedings of the National Academy of Sciences America 87, 1860–1864 (1990)

    Article  Google Scholar 

  15. van Hateren, J.: A theory of maximizing sensory information. Biological Cybernetics 68(1), 23–29 (1992)

    Article  MATH  Google Scholar 

  16. Srinivasan, M., Bernard, G.: The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Research 15, 515–525 (1975)

    Article  Google Scholar 

  17. http://www.admin.cam.ac.uk/news/press/dpp/2000061501

  18. Duparre, J., Eisener, M., Weible, K.: Miniaturized imaging systems. Microelectronic Engineering 67-68(1), 461–472 (2003)

    Google Scholar 

  19. Ko, H.C., Stoykovic, M., Song, J., Malyarchuk, V., Choi, W., Yu, C., Gegges III, J.B., Xiao, J., Wang, S., Huang, Y., Rogers, J.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  Google Scholar 

  20. Moini, A., Bouzerdoum, A., Eshraghian, K., Yakovleff, A., Nguyen, X., Blanksby, A., Beare, R., Abbott, D., Bogner, R.: An insect vision-based motion detection chip. Journal of Solid-State Circuits 32(2), 279–284 (1997)

    Article  Google Scholar 

  21. Mehta, S., Cummings, R.: Normal optical flow measurement on a CMOS APS imager. In: Proceedings of International Symposium on Circuits and Systems, vol. 4, pp. 848–851 (2004)

    Google Scholar 

  22. Milirud, V., Fleshel, L., Zhang, W., Jullien, G., Pecht, O.: A wide dynamic range CMOS active pixel sensor with frame difference. In: Proceedings of International Symposium on Circuits and Systems, vol. 1, pp. 588–591 (2005)

    Google Scholar 

  23. Kemeny, S., Panicacci, R., Pain, B., Matthies, L., Fossum, E.: Multiresolution image sensor. IEEE Transactions on Circuits and Systems for Video Technology 7(4), 575–583 (1997)

    Article  Google Scholar 

  24. Saffih, F., Hornsey, R.: Multiresolution CMOS image sensor. Technical Digest of SPIE Opto, Canada, pp. 425–428 (2002)

    Google Scholar 

  25. Mallik, U., Clapp, M., Choi, E., Cauwenberghs, G., Cummings, R.: Temporal change threshold detection imager. In: IEEE International Solid-State Circuits Conference, Digest of Technical Papers, vol. 1, pp. 362–363 (2005)

    Google Scholar 

  26. Borst, A.: Correlation versus gradient type motion detectors: the pros and cons. Philosophical Transactions of the Royal Society London B: Biological Sciences 362(1479), 369–374 (2007)

    Article  Google Scholar 

  27. Warrant, E.: Seeing better at night:life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research 39(9), 1611–1630 (1999)

    Article  Google Scholar 

  28. Williams, D.: Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 150, 509–519 (1983)

    Article  Google Scholar 

  29. Robin, L., Baron, J.: CMOS image sensors technologies and market - 2010 report. Tech. rep., Market research reports, Yole développement (2010)

    Google Scholar 

  30. Darmont, A.: Methods to extend the dynamic range of snapshot active pixels sensors. In: Proceedings of SPIE, International Society of Optical Engineering, vol. 6816, pp. 681603.1–681603.11 (2008)

    Google Scholar 

  31. Andreou, A., Kalayjian, Z.: Polarization imaging: principles and integrated polarimeters. IEEE Sensors Journal 2(6), 566–576 (2002)

    Article  Google Scholar 

  32. Zhao, X., Boussaid, F., Bermak, A., Chigrinov, V.: Thin photo-patterned micropolarizer array for CMOS image sensors. IEEE Photonics Technology Letters 21(12), 805–807 (2009)

    Article  Google Scholar 

  33. Tokuda, T., Yamada, H., Sasagawa, K., Ohta, J.: Polarization analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems. IEEE Transactions on Biomedical Circuits and Systems 3(5), 259–266 (2009)

    Article  Google Scholar 

  34. Wolff, L.: Polarization based material classification from specular reflection. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(11), 1059–1071 (1990)

    Article  Google Scholar 

  35. Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology 199, 129–140 (1996)

    Google Scholar 

  36. Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer, R., Wehner, R.: An autonomous agent navigating with a polarized light compass. Adaptive Behaviour 6(1), 131–161 (1997)

    Article  Google Scholar 

  37. Usher, K., Ridley, P., Corke, P.: A camera as a polarized light compass: preliminary experiments. In: Proceedings of Australian Conference on Robotics and Automation, pp. 116–120 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Sarkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarkar, M., Theuwissen, A. (2013). Introduction. In: A Biologically Inspired CMOS Image Sensor. Studies in Computational Intelligence, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34901-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34901-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34900-3

  • Online ISBN: 978-3-642-34901-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics