Advertisement

Shortest-Elapsed-Time-First on a Multiprocessor

  • Neal Barcelo
  • Sungjin Im
  • Benjamin Moseley
  • Kirk Pruhs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7659)

Abstract

We show that SETF, the idealized version of the uniprocessor scheduling algorithm used by Unix, is scalable for the objective of fractional flow on a homogeneous multiprocessor. We also give a potential function analysis for the objective of weighted fractional flow on a uniprocessor.

Keywords

Potential Function Schedule Algorithm Competitive Ratio Online Algorithm Future Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theor. Comput. Sci. 130(1), 17–47 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in online scheduling. SIGACT News 42(2), 83–97 (2011)CrossRefGoogle Scholar
  4. 4.
    Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A competitive algorithm for minimizing weighted flow time on unrelated machines with speed augmentation. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 679–684 (2009)Google Scholar
  5. 5.
    Chekuri, C., Khanna, S., Goel, A., et al.: Multi-processor scheduling to minimize flow time with resource augmentation. In: Proc. 36th Symp. Theory of Computing (STOC), pp. 363–372. ACM (2004)Google Scholar
  6. 6.
    Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup curves. In: SODA, pp. 685–692 (2009)Google Scholar
  7. 7.
    Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algorithms 3(4) (November 2007)Google Scholar
  8. 8.
    Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. Algorithmica 61(3), 507–517 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chan, H.L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary speedup curves on a multiprocessor. Theory Comput. Syst. 49(4), 817–833 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better Scalable Algorithms for Broadcast Scheduling. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 324–335. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Merrit, R.: Cpu designers debate multi-core future. EE Times (February 2010)Google Scholar
  12. 12.
    Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heterogeneous processors isn’t as easy as you think. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1242–1253. SIAM (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Neal Barcelo
    • 1
  • Sungjin Im
    • 2
  • Benjamin Moseley
    • 2
  • Kirk Pruhs
    • 1
  1. 1.Department of Computer ScienceUniversity of PittsburghUnited States
  2. 2.Computer Science DepartmentUniversity of IllinoisUnited States

Personalised recommendations