A Density Based Approach to the Access Point Layout Smart Distribution Grid Design Optimization Problem

  • Bin Zhang
  • Kamran Shafi
  • Hussein A. Abbass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)

Abstract

Advanced metering infrastructure (AMI) is an integral part of the smart grid. It plays a significant role in control and management for utilities. Along with its pervasiveness, effective AMI network design has drawn more attention. To some extent, the reliability and robustness of the whole system is partially pre-determined by the whole smart distribution network design. Location arrangement for Access Points (APs) is an important aspect of the smart distribution grid structure which influences the system performance greatly because an optimized network by itself is effective to reduce cost and deal with emergencies or threats such as a breakdown hazard. This paper is dedicated to employ multi-objective optimization formulations to analyze and solve this network design problem in the smart distribution grid.

Keywords

Smart Grid Neighborhood Area Network Layout Optimization Multi-Objective Optimization Genetic Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farhangi, H.: The path of the smart grid. IEEE Power and Energy Magazine 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Momoh, J.: Smart Grid: Fundamentals of Design and Analysis. John Wiley & Sons (2012)Google Scholar
  3. 3.
    Hart, D.G.: Using AMI to realize the Smart Grid. In: IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (2008)Google Scholar
  4. 4.
    Oksa, P., et al.: Considerations of Using Power Line Communication in the AMR System. In: 2006 IEEE International Symposium on Power Line Communications and Its Applications (2006)Google Scholar
  5. 5.
    Chih-Hung, W., Shun-Chien, C., Yu-Wei, H.: Design of a wireless ARM-based automatic meter reading and control system. In: IEEE Power Engineering Society General Meeting (2004)Google Scholar
  6. 6.
    Brown, R.E.: Impact of Smart Grid on distribution system design. In: IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (2008)Google Scholar
  7. 7.
    Bennett, C., Highfill, D.: Networking AMI Smart Meters. In: IEEE Energy 2030 Conference (2008)Google Scholar
  8. 8.
    McDaniel, P., McLaughlin, S.: Security and Privacy Challenges in the Smart Grid. IEEE Security & Privacy 7(3), 75–77 (2009)CrossRefGoogle Scholar
  9. 9.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26(6), 369–395 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Saaty, T.L., Bram, J.: Nonlinear mathematics. Dover (1964)Google Scholar
  11. 11.
    Mayr, E.: Toward a new philosophy of biology: observations of an evolutionist. Belknap Press of Harvard University Press (1988)Google Scholar
  12. 12.
    Deb, K., et al.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91(9), 992–1007 (2002)CrossRefGoogle Scholar
  14. 14.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, vol. 518. John Wiley & Sons, Inc. (2001)Google Scholar
  15. 15.
    Fonseca, C.M., Fleming, P.H.: Genetic Algorithms for multiobjective optimization: Formulation, Discussion and Generalization. In: The Fifth International Conference on Genetic Algorithms, San Mateo, CA (1993)Google Scholar
  16. 16.
    Srinivas, N., Deb, K.: Multiobjective function Optimization using nondominated sorting genetic algorithms. IEEE Transactions on Evolutionary Computation 2(3), 221–248 (1995)Google Scholar
  17. 17.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Knuth, D.E.: Art of Computer Programming, 3rd edn. Seminumerical Algorithms. Addison-Wesley Professional (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bin Zhang
    • 1
  • Kamran Shafi
    • 1
  • Hussein A. Abbass
    • 1
  1. 1.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations