Advertisement

GPU Accelerated Genetic Clustering

  • Pavel Krömer
  • Jan Platoš
  • Václav Snášel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)

Abstract

Genetic and evolutionary algorithms have been used to find clusters in data with success. Unfortunately, evolutionary clustering suffers from the high computational costs when it comes to fitness function evaluation. The GPU computing is a recent programming and development paradigm introducing high performance parallel computing to general audience. This study presents a design, implementation, and evaluation of a genetic algorithm for density based clustering for the nVidia CUDA platform.

Keywords

genetic algorithms clustering GPU CUDA acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves, V., Campello, R., Hruschka, E.: Towards a fast evolutionary algorithm for clustering. In: Yen, G.G., Lucas, S.M., Fogel, G., Kendall, G., Salomon, R., Zhang, B.T., Coello, C.A.C., Runarsson, T.P. (eds.) Proc. of the 2006 IEEE Congress on Evolutionary Computation, July 16-21, pp. 1776–1783. IEEE Press, Vancouver (2006)Google Scholar
  2. 2.
    Bandyopadhyay, S.: Genetic algorithms for clustering and fuzzy clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(6), 524–531 (2011)CrossRefGoogle Scholar
  3. 3.
    Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Rec. 35(6), 1197–1208 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Böhm, C., Noll, R., Plant, C., Wackersreuther, B.: Density-based clustering using graphics processors. In: Proc. of the 18th ACM Conf. on Information and Knowledge Management, CIKM 2009, pp. 661–670. ACM, New York (2009)Google Scholar
  5. 5.
    Brecheisen, S., Kriegel, H.-P., Pfeifle, M.: Parallel Density-Based Clustering of Complex Objects. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 179–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Das, S., Abraham, A., Konar, A.: Automatic Hard Clustering Using Improved Differential Evolution Algorithm. In: Das, S., Abraham, A., Konar, A. (eds.) Metaheuristic Clustering. SCI, vol. 178, pp. 137–174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Das, S., Abraham, A., Konar, A.: Metaheuristic Pattern Clustering – An Overview. In: Das, S., Abraham, A., Konar, A. (eds.) Metaheuristic Clustering. SCI, vol. 178, pp. 1–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Desell, T.J., Anderson, D.P., Magdon-Ismail, M., Newberg, H.J., Szymanski, B.K., Varela, C.A.: An analysis of massively distributed evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  9. 9.
    Dunn, J.C.: Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics 4, 95–104 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17, 107–145 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Harish, P., Narayanan, P.J.: Accelerating Large Graph Algorithms on the GPU Using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. Trans. Sys. Man Cyber. Part C 39, 133–155 (2009)CrossRefGoogle Scholar
  13. 13.
    Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)CrossRefGoogle Scholar
  14. 14.
    Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(3), 231–240 (2011)CrossRefGoogle Scholar
  15. 15.
    Krömer, P., Platos, J., Snasel, V.: Differential evolution for the linear ordering problem implemented on cuda. In: Smith, A.E. (ed.) Proceedings of the 2011 IEEE Congress on Evolutionary Computation, June 5-8. IEEE Computational Intelligence Society, pp. 790–796. IEEE Press, New Orleans (2011)Google Scholar
  16. 16.
    Krömer, P., Snásel, V., Platos, J., Abraham, A.: Many-threaded implementation of differential evolution for the cuda platform. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 1595–1602. ACM (2011)Google Scholar
  17. 17.
    Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming on GPU Graphics Cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE 10th Int. Conf. on Data Mining (ICDM), pp. 911–916 (December 2010)Google Scholar
  19. 19.
    Luo, L., Wong, M., Hwu, W.M.: An effective gpu implementation of breadth-first search. In: Proc. of the 47th Design Automation Conf., DAC 2010, pp. 52–55. ACM, New York (2010)CrossRefGoogle Scholar
  20. 20.
    Pospichal, P., Jaros, J., Schwarz, J.: Parallel Genetic Algorithm on the CUDA Architecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Robilliard, D., Marion, V., Fonlupt, C.: High performance genetic programming on gpu. In: Proc. of the 2009 Workshop on Bio-inspired Algorithms for Distributed Systems, BADS 2009, pp. 85–94. ACM, New York (2009)CrossRefGoogle Scholar
  22. 22.
    de Veronese, L., Krohling, R.: Differential evolution algorithm on the gpu with c-cuda. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (July 2010)Google Scholar
  23. 23.
    Zhu, W., Li, Y.: Gpu-accelerated differential evolutionary markov chain monte carlo method for multi-objective optimization over continuous space. In: Proceeding of the 2nd Workshop on Bio-inspired Algorithms for Distributed Systems, BADS 2010, pp. 1–8. ACM, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavel Krömer
    • 1
    • 2
  • Jan Platoš
    • 1
    • 2
  • Václav Snášel
    • 1
    • 2
  1. 1.Department of Computer ScienceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.IT4InnovationsOstrava-PorubaCzech Republic

Personalised recommendations