An Efficient Two-Phase Ant Colony Optimization Algorithm for the Closest String Problem

  • Hoang Xuan Huan
  • Dong Do Duc
  • Nguyen Manh Ha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)


Given a finite set S of strings of length m, the task of finding a string t that minimizes the Hamming distance from t to S, has wide applications. This paper presents a two-phase Ant Colony Optimization (ACO) algorithm for the problem. The first phase uses the Smooth Max-Min (SMMAS) rule to update pheromone trails. The second phase is a memetic algorithm that uses ACO method to generate a population of solutions in each iteration, and a local search technique on the two best solutions. The efficiency of our algorithm has been evaluated by comparing to the Ant-CSP algorithm.


Memetic algorithm Ant Colony Optimization Closest String Problem Local Search Pheromone update rule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucher, C., Ma, B.: Closest String with Outliers. BMC Bioinformatics 12(suppl. 1), S55 (2011)CrossRefGoogle Scholar
  2. 2.
    Boucher, C., Landau, G.M., Levy, A., Pritchard, D., Weimann, O.: On Approximating String Selection Problems with Outliers. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 427–438. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Chen, X.S., Ong, Y.S., Lim, M.H.: Research Frontier: Memetic Computation - Past, Present & Future. IEEE Computational Intelligence Magazine 5(2), 24–36 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A Multi-Facet Survey on Memetic Computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)CrossRefGoogle Scholar
  5. 5.
    Chen, Z.Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. J. Comput. Syst. Sci. 78(1), 164–178 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, Z.Z., Wang, L.: Fast Exact Algorithms for the Closest String and Substring Problems with Applicationto the Planted (L. d)-Motif Model. IEEE/ACM Transaction on Computational Biology and Bioinformatics 8(5), 1400–1410 (2011)CrossRefGoogle Scholar
  7. 7.
    Do Duc, D., Dinh, H.Q., Hoang Xuan, H.: On the Pheromone Update Rules of Ant Colony Optimization Approaches for the Job Shop Scheduling Problem. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 153–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Do Duc, D., Hoang Xuan, H.: ACOHAP: A novel Ant Colony Optimization algorithm for haplotype inference problem. In: Proc. of the Third International Conference on Knowledge and Systems Engineering (KSE 2011), pp. 128–134 (2011)Google Scholar
  9. 9.
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: An autocatalytic optimizing process. Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy (1991)Google Scholar
  10. 10.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Faro, S., Pappalardo, E.: Ant-CSP: An Ant Colony Optimization Algorithm for the Closest String Problem. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 370–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems 30(2), 113–119 (1997)MathSciNetMATHGoogle Scholar
  13. 13.
    Gasieniec, L., Jansson, J., Lingas, A.: Effcient approximation algorithms for the Hamming center problem. In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 905–906 (1999)Google Scholar
  14. 14.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for Closest String and related problems. In: Proc. of the 12th International Symposium on Algorithms and Computation, pp. 441–453. Springer, London (2001)Google Scholar
  15. 15.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica, 25–42 (2003)Google Scholar
  16. 16.
    Hertz, G.Z., Hartzell, G.W., Stormo, G.D.: Identication of consensus patterns in unaligned DNA sequences known to be functionally related. Bioinformatics 6(2), 81–92 (1990)CrossRefGoogle Scholar
  17. 17.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing String Selection Problems. Information and Computation 185, 41–55 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49(2), 157–171 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, B., Sun, X.: More Efficient Algorithms for Closest String and Substring Problems. SIAM J. Comput. 39(4), 1432–1443 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Tech. Rep.Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, California, USA (1989)Google Scholar
  21. 21.
    Dinu, L.P., Popa, A.: On the Closest String via Rank Distance. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 413–426. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hoang Xuan Huan
    • 1
  • Dong Do Duc
    • 1
  • Nguyen Manh Ha
    • 1
  1. 1.University of Engineering and Technology, VNUHanoiVietnam

Personalised recommendations