Skip to main content

Application of Cooperative Convolution Optimization for 13C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7673))

Abstract

Metabolic fluxes are the key determinants of cellular metabolism. They are estimated from stable isotope labeling experiments and provide the informative parameters in evaluating cell physiology and causes of disease. Metabolic flux analysis involves in solving a system of non-linear isotopomer balance equations by simulating the isotopic labeling distributions of metabolites measured by tandem mass spectrometry, which is essentially an optimization problem. In this work, we introduce the cooperative coevolution optimization method for solving the set of non-linear equations that decomposes a large problem into a set of subcomponents. We demonstrate that cooperative coevolution can be used for solving the given metabolic flux model. While the proposed approach makes good progress on the use of evolutionary computation techniques for this problem, there exist a number of disadvantages that need to be addressed in the future to meet the expectation of the biologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, J.: Toward a science of metabolic engineering. Science 252(5013), 1668–1675 (1991)

    Article  Google Scholar 

  2. Nielsen, J.: It is all about metabolic fluxes. J. Bacteriol. 185(24), 7031–7035 (2003)

    Article  Google Scholar 

  3. Sauer, U.: Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006)

    Article  Google Scholar 

  4. Jeffrey, F.M., Roach, J.S., Storey, C.J., Sherry, A.D., Malloy, C.R.: 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal. Biochem. 300(2), 192–205 (2002)

    Article  Google Scholar 

  5. Choi, J., Antoniewicz, M.R.: Tandem mass spectrometry: A novel approach for metabolic flux analysis. Metab. Eng. 13(2), 225–233 (2011)

    Article  Google Scholar 

  6. Peng, L., Arauzo-Bravo, M.J., Shimizu, K.: Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiol. Lett. 235(1), 17–23 (2004)

    Article  Google Scholar 

  7. Zhao, J., Shimizu, K.: Metabolic flux analysis of escherichia coli k12 grown on 13c-labeled acetate and glucose using gc-ms and powerful flux calculation method. Journal of Biotechnology 101(2), 101–117 (2003)

    Article  Google Scholar 

  8. Zhang, H., Yao, S.: Simulation of flux distribution in central metabolism of saccharomyces cerevisiae by hybridized genetic algorithm. Chinese Journal of Chemical Engineering 15(2), 150–156 (2007)

    Article  Google Scholar 

  9. Potter, M.A., Jong, K.A.D.: A Cooperative Coevolutionary Approach to Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Google Scholar 

  10. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chandra, R., Frean, M., Zhang, M.: An Encoding Scheme for Cooperative Coevolutionary Feedforward Neural Networks. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 253–262. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Chandra, R., Frean, M., Zhang, M.: On the issue of separability for problem decomposition in cooperative neuro-evolution. Neurocomputing 87, 33–40 (2012)

    Article  Google Scholar 

  13. Chandra, R., Frean, M., Zhang, M., Omlin, C.W.: Encoding subcomponents in cooperative co-evolutionary recurrent neural networks. Neurocomputing 74(17), 3223–3234 (2011)

    Article  Google Scholar 

  14. Chandra, R., Zhang, M.: Cooperative coevolution of elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86(0), 116–123 (2012)

    Article  Google Scholar 

  15. Supudomchok, S., Chaiyaratana, N., Phalakomkule, C.: Co-operative co-evolutionary approach for flux balance in bacillus subtilis. In: IEEE Congress on Evolutionary Computation, pp. 1226–1231. IEEE (2008)

    Google Scholar 

  16. Schmidt, K., Carlsen, M., Nielsen, J., Villadsen, J.: Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnology and Bioengineering 55(6), 831–840 (1997)

    Article  Google Scholar 

  17. Zupke, C., Stephanopoulos, G.: Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnology Progress 10(5), 489–498 (1994)

    Article  Google Scholar 

  18. Online Tandem MS Software (May 2012), http://softwarefoundationfiji.org/research/bioinfor/tandem/

  19. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandra, R., Zhang, M., Peng, L. (2012). Application of Cooperative Convolution Optimization for 13C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds) Simulated Evolution and Learning. SEAL 2012. Lecture Notes in Computer Science, vol 7673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34859-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34859-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34858-7

  • Online ISBN: 978-3-642-34859-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics