A Study of Breakout Local Search for the Minimum Sum Coloring Problem

  • Una Benlic
  • Jin-Kao Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)


Given an undirected graph G = (V,E), the minimum sum coloring problem (MSCP) is to find a legal assignment of colors (represented by natural numbers) to each vertex of G such that the total sum of the colors assigned to the vertices is minimized. In this paper, we present Breakout Local Search (BLS) for MSCP which combines some essential features of several well-established metaheuristics. BLS explores the search space by a joint use of local search and adaptive perturbation strategies. Tested on 27 commonly used benchmark instances, our algorithm shows competitive performance with respect to recently proposed heuristics and is able to find new record-breaking results for 4 instances.


minimum sum coloring adaptive perturbation strategy heuristic combinatorial optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for max-sat. ACM Journal of Experimental Algorithmics 2 (1996)Google Scholar
  2. 2.
    Benlic, U., Hao, J.K.: Breakout local search for maximum clique problems. Operations Research 40(1), 192–206 (2013)Google Scholar
  3. 3.
    Bouziri, H., Jouini, M.: A tabu search approach for the sum coloring problem. Electronic Notes in Discrete Mathematics 36, 915–922 (2010)CrossRefGoogle Scholar
  4. 4.
    Douiri, S.M., Elbernoussi, S.: New algorithm for the sum coloring problem. International Journal of Contemporary Mathematical Sciences 6, 453–463 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Helmar, A., Chiarandini, M.: A local search heuristic for chromatic sum. In: MIC 2011, pp. 161–170 (2011)Google Scholar
  7. 7.
    Kelly, J.P., Laguna, M., Glover, F.: A study of diversification strategies for the quadratic assignment problem. Computers and Operations Research 21(8), 885–893 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kirkpatrick, S., Gelett, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 621–630 (1983)CrossRefGoogle Scholar
  9. 9.
    Kokosiński, Z., Kwarciany, K.: On Sum Coloring of Graphs with Parallel Genetic Algorithms. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007, Part I. LNCS, vol. 4431, pp. 211–219. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Lucet, C., Moukrim, A., Sghiouer, K.: Greedy algorithms for minimum sum coloring algorithm. In: Proceedings of LT 2009 (2009)Google Scholar
  11. 11.
    Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. Handbook of Meta-heuristics. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Malafiejski, M.: Sum coloring of graphs. In: Kubale, M. (ed.) AMS Graph Colorings, pp. 55–65 (2004)Google Scholar
  13. 13.
    Wu, Q., Hao, J.K.: An effective heuristic algorithm for sum coloring of graphs. Computers & Operations Research 39(7), 1593–1600 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Una Benlic
    • 1
  • Jin-Kao Hao
    • 1
  1. 1.LERIAUniversité d’AngersAngers Cedex 01France

Personalised recommendations