Advertisement

The Influence of the Number of Initial Feasible Solutions on the Performance of an Evolutionary Optimization Algorithm

  • Saber M. Elsayed
  • Ruhul A. Sarker
  • Daryl L. Essam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7673)

Abstract

Constrained optimization is a well-known research topic in the evolutionary computation field. In these problems, the selected solution must be feasible. In evolutionary constrained optimization, the search space is usually much bigger than the feasible space of the problem. There is a general view that the presence or absence of any feasible individuals in the initial population substantially influences the performance of the algorithm. Therefore, the aim of this research is to analyze the effect of the number of feasible individuals, in the initial population, on the algorithm’s performance. For experimentation, we solve a good number of well-known bench-mark problems using a Differential Evolution algorithm. The results show that the algorithm performs slightly better, for the test problems solved, when the initial population contains about 5% feasible individuals.

Keywords

Constrained optimization differential evolution feasible individual 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization Problems. Computers and Operations Research 38, 1877–1896 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  3. 3.
    Elsayed, S.M., Sarker, R.A., Essam, D.L.: GA with a new multi-parent crossover for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp. 857–864 (2011)Google Scholar
  4. 4.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, MA (1989)zbMATHGoogle Scholar
  5. 5.
    Powell, M.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G. (ed.) Numerical Analysis, pp. 144–157. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  6. 6.
    Singh, H.K., Ray, T., Smith, W.: Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)Google Scholar
  7. 7.
    Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. In: The 2005 Conference on Genetic and Evolutionary Computation, pp. 225–232. ACM, Washington DC (2005)CrossRefGoogle Scholar
  8. 8.
    Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9, 1–17 (2005)CrossRefGoogle Scholar
  9. 9.
    Vieira, D.A.G., Adriano, R.L.S., Vasconcelos, J.A., Krahenbuhl, L.: Treating constraints as objectives in multiobjective optimization problems using niched Pareto genetic algorithm. IEEE Transactions on Magnetics 40, 1188–1191 (2004)CrossRefGoogle Scholar
  10. 10.
    Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility Driven Evolutionary Algorithm for Constrained Optimization. In: Mezura-Montes, E. (ed.) Constraint-Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145–165. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Barkat-Ullah, A.S.S.M., Sarker, R., Cornforth, D.: Search space reduction technique for constrained optimization with tiny feasible space. In: The 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, pp. 881–888 (2008)Google Scholar
  12. 12.
    Barkat-Ullah, A.S.S.M., Elfeky, E.Z., Cornforth, D., Essam, D.L., Sarker, R.: Improved evolutionary algorithms for solving constrained optimization problems with tiny feasible space. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1426–1433 (2008)Google Scholar
  13. 13.
    Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2010 competition and special session on single objective constrained real-parameter optimization. Technical Report, Nangyang Technological University, Singapore (2010)Google Scholar
  14. 14.
    Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int. Mendel Conference on Soft Computing, Brno, Czech Republic, pp. 76–83 (2000)Google Scholar
  15. 15.
    Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress on Evolutionary Computation, pp. 980–1987 (2004)Google Scholar
  16. 16.
    Elsayed, S.M., Sarker, R.A., Ray, T.: Parameters Adaptation in Differential Evolution. In: IEEE Congress on Evolutionary Computation (accepted, 2012)Google Scholar
  17. 17.
    Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore (2005)Google Scholar
  18. 18.
    Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. John Wiley, Hoboken (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Saber M. Elsayed
    • 1
  • Ruhul A. Sarker
    • 1
  • Daryl L. Essam
    • 1
  1. 1.School of Engineering and Information TechnologyUniversity of New South Wales at Australian Defence Force AcademyCanberraAustralia

Personalised recommendations