Skip to main content

Improving Diagnosis Agents with Hybrid Hypotheses Confirmation Reasoning Techniques

  • Conference paper
  • 844 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7541)

Abstract

This article proposes a (MAS) architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypotheses generation and hypotheses confirmation. The first process is distributed among several agents based on a (MSBN), while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both reasoning processes. To drive the deliberation process, the strength of influence obtained from (CDF) method is used during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlighted as conclusions.

Keywords

  • agent
  • Bayesian
  • ontology
  • diagnosis
  • network

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34799-3_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-34799-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   72.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arozarena, P., Toribio, R., Kielthy, J., Quinn, K., Zach, M.: Probabilistic Fault Diagnosis in the MAGNETO Autonomic Control Loop. In: Stiller, B., De Turck, F. (eds.) AIMS 2010. LNCS, vol. 6155, pp. 102–105. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  2. Benjamins, R.: Problem-solving methods for diagnosis and their role. International Journal of Expert Systems: Research and Applications 8(2), 93–120 (1995)

    Google Scholar 

  3. Berthet, G., Fischer, N.: A unified theory of fault diagnosis and distributed fault management in communication networks. In: Proceedings of IEEE AFRICON 1996, pp. 776–781. IEEE (1995)

    Google Scholar 

  4. Carrera, A., Iglesias, C.A.: B2DI - A Bayesian BDI Agent Model with Causal Belief Updating based on MSBN. In: Proceedings of the 4th International Conference on Agents and Artificial Intelligence, pp. 343–346 (2012)

    Google Scholar 

  5. Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Proceedings of the 2006 Fourth International Conference on Formal Ontology in Information Systems, FOIS 2006, pp. 237–249. IOS Press (2006)

    Google Scholar 

  6. FitzGerald, J., Dennis, A.: Business Data Communications and Networking. John Wiley and Sons (2008)

    Google Scholar 

  7. García-Algarra, F.J., Arozarena-Llopis, P., García-Gómez, S., Carrera-Barroso, A.: A lightweight approach to distributed network diagnosis under uncertainty. In: INCOS 2009: Proceedings of the 2009 International Conference on Intelligent Networking and Collaborative Systems, pp. 74–80. IEEE Computer Society, Washington, DC (2009)

    CrossRef  Google Scholar 

  8. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. Information Science and Statistics. Springer, New York (2008)

    MATH  CrossRef  Google Scholar 

  9. Kraaijeveld, P., Druzdzel, M., Onisko, A., Wasyluk, H.: Genierate: An interactive generator of diagnostic bayesian network models. In: Proc. 16th Int. Workshop Principles Diagnosis, pp. 175–180. Citeseer (2005)

    Google Scholar 

  10. O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen, M.: Supporting Rule System Interoperability on the Semantic Web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Sedano-Frade, A., González-Ordás, J., Arozarena-Llopis, P., García-Gómez, S., Carrera-Barroso, A.: Distributed Bayesian Diagnosis for Telecommunication Networks. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 231–240. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  12. Xiang, Y.: Belief updating in multiply sectioned Bayesian networks without repeated local propagations. International Journal of Approximate Reasoning 23(1), 1–21 (2000)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Xiang, Y., Poole, D., Beddoes, M.P.: Multiply Sectioned Bayesian Networks and Junction Forests for Large Knowledge-based Systems. Computational Intelligence 9(2), 171–220 (1993)

    CrossRef  Google Scholar 

  14. Wang, X.H., Zhang, D.Q.: Ontology based context modeling and reasoning using OWL. IEEE (March 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carrera, Á., Iglesias, C.A. (2012). Improving Diagnosis Agents with Hybrid Hypotheses Confirmation Reasoning Techniques. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds) Multi-Agent Systems. EUMAS 2011. Lecture Notes in Computer Science(), vol 7541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34799-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34799-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34798-6

  • Online ISBN: 978-3-642-34799-3

  • eBook Packages: Computer ScienceComputer Science (R0)