Advertisement

Improving Diagnosis Agents with Hybrid Hypotheses Confirmation Reasoning Techniques

  • Álvaro Carrera
  • Carlos A. Iglesias
Conference paper
  • 728 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7541)

Abstract

This article proposes a (MAS) architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypotheses generation and hypotheses confirmation. The first process is distributed among several agents based on a (MSBN), while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both reasoning processes. To drive the deliberation process, the strength of influence obtained from (CDF) method is used during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlighted as conclusions.

Keywords

agent Bayesian ontology diagnosis network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arozarena, P., Toribio, R., Kielthy, J., Quinn, K., Zach, M.: Probabilistic Fault Diagnosis in the MAGNETO Autonomic Control Loop. In: Stiller, B., De Turck, F. (eds.) AIMS 2010. LNCS, vol. 6155, pp. 102–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Benjamins, R.: Problem-solving methods for diagnosis and their role. International Journal of Expert Systems: Research and Applications 8(2), 93–120 (1995)Google Scholar
  3. 3.
    Berthet, G., Fischer, N.: A unified theory of fault diagnosis and distributed fault management in communication networks. In: Proceedings of IEEE AFRICON 1996, pp. 776–781. IEEE (1995)Google Scholar
  4. 4.
    Carrera, A., Iglesias, C.A.: B2DI - A Bayesian BDI Agent Model with Causal Belief Updating based on MSBN. In: Proceedings of the 4th International Conference on Agents and Artificial Intelligence, pp. 343–346 (2012)Google Scholar
  5. 5.
    Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Proceedings of the 2006 Fourth International Conference on Formal Ontology in Information Systems, FOIS 2006, pp. 237–249. IOS Press (2006)Google Scholar
  6. 6.
    FitzGerald, J., Dennis, A.: Business Data Communications and Networking. John Wiley and Sons (2008)Google Scholar
  7. 7.
    García-Algarra, F.J., Arozarena-Llopis, P., García-Gómez, S., Carrera-Barroso, A.: A lightweight approach to distributed network diagnosis under uncertainty. In: INCOS 2009: Proceedings of the 2009 International Conference on Intelligent Networking and Collaborative Systems, pp. 74–80. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  8. 8.
    Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. Information Science and Statistics. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kraaijeveld, P., Druzdzel, M., Onisko, A., Wasyluk, H.: Genierate: An interactive generator of diagnostic bayesian network models. In: Proc. 16th Int. Workshop Principles Diagnosis, pp. 175–180. Citeseer (2005)Google Scholar
  10. 10.
    O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., Musen, M.: Supporting Rule System Interoperability on the Semantic Web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Sedano-Frade, A., González-Ordás, J., Arozarena-Llopis, P., García-Gómez, S., Carrera-Barroso, A.: Distributed Bayesian Diagnosis for Telecommunication Networks. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 231–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Xiang, Y.: Belief updating in multiply sectioned Bayesian networks without repeated local propagations. International Journal of Approximate Reasoning 23(1), 1–21 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Xiang, Y., Poole, D., Beddoes, M.P.: Multiply Sectioned Bayesian Networks and Junction Forests for Large Knowledge-based Systems. Computational Intelligence 9(2), 171–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Wang, X.H., Zhang, D.Q.: Ontology based context modeling and reasoning using OWL. IEEE (March 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Álvaro Carrera
    • 1
  • Carlos A. Iglesias
    • 1
  1. 1.Universidad Politécnica de MadridMadridSpain

Personalised recommendations