Advertisement

Partial Commutation on Array Languages

  • Thangasamy Kamaraj
  • Durairaj Gnanaraj Thomas
  • H. Geetha
  • T. Kalyani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7655)

Abstract

Algebraic characterization of recognizable trace languages were studied and the relation of recognizable trace languages to elementary Petri nets were established by using partial commutation as a tool. Motivated by the above studies in string languages, we have extended the notion of partial commutation to two-dimensional array languages and established that if L is local then φ(L) need not be local, where φ is a partial commutation mapping. We have proved that L(φ(θ)) and φ(L(θ)) are not disjoint, where θ is a finite set of 2 ×2 tiles over the alphabet Γ ∪ {#}. We have also considered partial commutation mapping on Siromoney matrix languages and proved some interesting results.

Keywords

Tiling system Projection Local recognizability Partial commutation and trace languages Siromoney matrix grammar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of IEEE Symposium on Switching and Automata Theory, pp. 155–160 (1967)Google Scholar
  2. 2.
    Cartier, P., Foata, D.: Problemes combinatories de commutation et rearrangement. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg (1969)Google Scholar
  3. 3.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific Publishers, Singapore (1995)Google Scholar
  4. 4.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. International Journal on Pattern Recognizition and Artificial Intelligence; Nivat, M., Soudi, A., Wang, P.S.P. (eds.) Special Issue on Parallel Image Processing, pp. 31–46 (1992)Google Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal Languages, vol. 3, pp. 215–226. Springer, Berlin (1997)CrossRefGoogle Scholar
  6. 6.
    Mazurkiewicz, A.: Introduction to Trace Theory. In: Diekert, V., Rozenberg, G. (eds.) The Book of Traces, pp. 3–41. World Scientific Publishers, Singapore (1995)CrossRefGoogle Scholar
  7. 7.
    Ochmański, E.: Recognizable trace languages. In: Diekert, V., Rozenberg, G. (eds.) The Book of Traces, ch. 6, pp. 167–204. World Scientific Publishers, Singapore (1995)CrossRefGoogle Scholar
  8. 8.
    Rosenfeld, A.: Picture languages: Formal Models for Picture Recognition. Academic Press (1979)Google Scholar
  9. 9.
    Rosenfeld, A., Siromoney, R.: Picture languages - A survey. Languages of Design 1, 229–245 (1993)Google Scholar
  10. 10.
    Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture languages. Computer Graphics and Image Processing 2, 284–307 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel/sequential rectangular arrays with tables. International Journal of Computer Mathematics 6A, 143–158 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Subramanian, K.G.: P Systems and Picture Languages. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 99–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Thomas, W.: On Logics, Tilings and Automata. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–453. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thangasamy Kamaraj
    • 1
  • Durairaj Gnanaraj Thomas
    • 2
  • H. Geetha
    • 3
  • T. Kalyani
    • 3
  1. 1.Department of MathematicsSathyabama UniversityChennaiIndia
  2. 2.Department of MathematicsMadras Christian CollegeChennaiIndia
  3. 3.Department of MathematicsSt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations