Advertisement

Rectangular Arrays and Petri Nets

  • D. Lalitha
  • K. Rangarajan
  • Durairaj Gnanaraj Thomas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7655)

Abstract

Array Token Petri Net Structure (ATPNS) to generate rectangular arrays has been defined in [6]. We prove that this model generate the regular array languages. By introducing a control on the firing sequence, we have shown that, ATPNS with inhibitor arcs generate the context-free and context-sensitive array languages. Comparisons with other classes of array languages have been made.

Keywords

Array token Catenation Inhibitor arcs Petri net Picture languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, H.G.: Petri net languages. Computation Structures Group Memo 124, Project MAC. MIT, Cambridge (1972)Google Scholar
  2. 2.
    Giammarresi, D., Restivo, A.: Two-dimensional langauges. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages 3, pp. 215–267. Springer (1997)Google Scholar
  3. 3.
    Hack, M.: Petri net languages. Computation Structures Group Memo 124, Project MAC. MIT (1975)Google Scholar
  4. 4.
    Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall, Inc., Englewood Cliffs (1981)Google Scholar
  5. 5.
    Lalitha, D., Rangarajan, K.: Column and row catenation petri net systems. In: Proceedings of the Fifth IEEE International Conference on Bio-Inspired Computing: Theories and Applications, pp. 1382–1387 (2010)Google Scholar
  6. 6.
    Lalitha, D., Rangarajan, K.: An application of array token Petri nets to clustering analysis for syntactic patterns. International Journal of Computer Applications 42(16), 21–25 (2012)CrossRefGoogle Scholar
  7. 7.
    Rosenfeld, A., Siromoney, R.: Picture languages - A survey. Languages of Design 1(3), 229–245 (1993)Google Scholar
  8. 8.
    Shirley Gloria, D.K., Immanuel, B., Rangarajan, K.: Parallel context-free string-token Petri nets. International Journal of Pure and Applied Mathematics 59(3), 275–289 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Siromoney, R.: Advances in Array Languages. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 549–563. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  10. 10.
    Siromoney, R., Siromoney, G.: Extended controlled table L-arrays. Information and Control 35, 119–138 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Siromoney, G., Siromoney, R., Kamala, K.: Picture languages with array rewriting rules. Information and Control 22, 447–470 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Siromoney, G., Siromoney, R., Kamala, K.: Array grammars and kolam. Computer Graphics and Image Processing 3(1), 63–82 (1974)CrossRefGoogle Scholar
  13. 13.
    Subramanian, K.G., Rosihan, M., Ali, G.M., Nagar, A.K.: Pure 2D picture grammars and languages. Discrete Applied Mathematics 157(16), 3401–3411 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wang, P.S.P.: An application of array grammars to clustering analysis for syntactic patterns. Pattern Recognition 17(4), 441–451 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Lalitha
    • 1
  • K. Rangarajan
    • 2
  • Durairaj Gnanaraj Thomas
    • 3
  1. 1.Department of MathematicsSathyabama UniversityChennaiIndia
  2. 2.Department of MathematicsBarath UniversityChennaiIndia
  3. 3.Department of MathematicsMadras Christian CollegeChennaiIndia

Personalised recommendations