On Topology Preservation for Triangular Thinning Algorithms

  • Péter Kardos
  • Kálmán Palágyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7655)


Thinning is a frequently used strategy to produce skeleton-like shape features of binary objects. One of the main problems of parallel thinning is to ensure topology preservation. Solutions to this problem have been already given for the case of orthogonal and hexagonal grids. This work introduces some characterizations of simple pixels and some sufficient conditions for parallel thinning algorithms working on triangular grids (or hexagonal lattices) to preserve topology.


Triangular grids Topology preservation Thinning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Transactions on Computers C-19(10), 982–983 (1970)CrossRefGoogle Scholar
  2. 2.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Communications of the ACM 15, 827–837 (1972)CrossRefGoogle Scholar
  3. 3.
    Gaspar, F.J., Gracia, J.L., Lisbona, F.J., Rodrigo, C.: On geometric multigrid methods for triangular grids using three-coarsening strategy. Applied Numerical Mathematics 59(7), 1693–1708 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science (1996)Google Scholar
  5. 5.
    Kardos, P., Palágyi, K.: On Topology Preservation for Hexagonal Parallel Thinning Algorithms. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 31–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Kong, T.Y.: On topology preservation in 2-d and 3-d thinning. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar
  7. 7.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  8. 8.
    Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies — A comprehensive survey. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 869–885 (1992)CrossRefGoogle Scholar
  9. 9.
    Ma, C.M.: On topology preservation in 3D thinning. CVGIP: Image Understanding 59, 328–339 (1994)CrossRefGoogle Scholar
  10. 10.
    Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing – A Discrete Approach. Academic Press (2000)Google Scholar
  11. 11.
    Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25(11), 1231–1242 (2004)CrossRefGoogle Scholar
  12. 12.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics 21, 67–79 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, 1st edn. Springer Publishing Company, Incorporated (2008)Google Scholar
  14. 14.
    Staunton, R.C.: An analysis of hexagonal thinning algorithms and skeletal shape representation. Pattern Recognition 29, 1131–1146 (1996)CrossRefGoogle Scholar
  15. 15.
    Staunton, R.C.: One-pass parallel hexagonal thinning algorithm. In: Proc. IEE 7th Int. Conf. Image Processing and its Applications, pp. 841–845 (1999)Google Scholar
  16. 16.
    Suen, C.Y., Wang, P.S.P. (eds.): Thinning methodologies for pattern recognition. Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific (1994)Google Scholar
  17. 17.
    Kardos, P., Németh, G., Palágyi, K.: An Order–Independent Sequential Thinning Algorithm. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 162–175. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Péter Kardos
    • 1
  • Kálmán Palágyi
    • 1
  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedHungary

Personalised recommendations