Skip to main content

Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling

  • Conference paper
Machine Learning and Interpretation in Neuroimaging

Abstract

In this paper we investigate how the Infinite Relational Model can be used to infer functional groupings of the human striatum using resting state fMRI data from 30 healthy subjects. The Infinite Relational Model is a non-parametric Bayesian method for infering community structure in complex networks. We visualize the solution found by performing evidence accumulation clustering on the maximum a posterior solutions found in 100 runs of the sampling scheme. The striatal groupings found are symmetric between hemispheres indicating that the model is able to group voxels across hemispheres, which are involved in the same neural computations. The reproducibility of the groupings found are assessed by calculating mutual information between half splits of the subject sample for various hyperparameter values. Finally, the model’s ability to predict unobserved links is assessed by randomly treating links and non-links in the graphs as missing. We find that the model is performing well above chance for all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, G.E., Crutcher, M.D., DeLong, M.R.: Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, ”prefrontal” and ”limbic” functions. Progress in Brain Research 85, 119–146 (1991)

    Article  Google Scholar 

  2. Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences of the United States of America 101(12), 4164–4169 (2004)

    Article  Google Scholar 

  3. Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology 7, 113–140 (2011)

    Article  Google Scholar 

  4. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., Benali, H.: Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research 199(1), 61–75 (2009)

    Article  Google Scholar 

  5. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)

    Article  Google Scholar 

  6. Haber, S.: The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy 26(4), 317–330 (2003)

    Article  Google Scholar 

  7. Jain, S., Neal, R.M.: A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model. Journal of Computational and Graphical Statistics 13(1), 158–182 (2004)

    Article  MathSciNet  Google Scholar 

  8. Kemp, C., Tenenbaum, J., Griffiths, T., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Proceedings of the National Conference on Artificial Intelligence, vol. 21, pp. 381–388. AAAI Press, MIT Press, Menlo Park, Cambridge (1999, 2006)

    Google Scholar 

  9. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping 10(3), 120–131 (2000)

    Article  Google Scholar 

  10. Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H.: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3), 1233–1239 (2003)

    Article  Google Scholar 

  11. Mehler-Wex, C., Riederer, P., Gerlach, M.: Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotoxicity Research 10, 167–179 (2006)

    Article  Google Scholar 

  12. Middleton, F.A., Strick, P.L.: Basal-ganglia ’projections’ to the prefrontal cortex of the primate. Cerebral Cortex 12(9), 926–935 (2002)

    Article  Google Scholar 

  13. Mørup, M., Madsen, K., Dogonowski, A.M., Siebner, H., Hansen, L.: Infinite relational modeling of functional connectivity in resting state fMRI. In: Advances in Neural Information Processing Systems 23, pp. 1750–1758 (2010)

    Google Scholar 

  14. Obeso, J.A., Rodríguez-Oroz, M.C., Benitez-Temino, B., Blesa, F.J., Guridi, J., Marin, C., Rodriguez, M.: Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society 23(suppl. 3), S548–S559 (2008)

    Article  Google Scholar 

  15. Sporns, O.: The human connectome: a complex network. Annals of the New York Academy of Sciences 1224(1), 109–125 (2011)

    Article  Google Scholar 

  16. Xia, M., He, Y.: Magnetic Resonance Imaging and Graph Theoretical Analysis of Complex Brain Networks in Neuropsychiatric Disorders. Brain Connectivity 1(5), 349–365 (2011)

    Article  Google Scholar 

  17. Xu, Z., Tresp, V., Yu, K., Kriegel, H.: Infinite hidden relational models. In: Proceedings of the 22nd International Conference on Uncertainity in Artificial Intelligence (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersen, K.W., Madsen, K.H., Siebner, H., Hansen, L.K., Mørup, M. (2012). Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics